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Abstract. Photoassociation of ultracold atoms induced by chirped picosecond pulses is analyzed in a non-
perturbative treatment by following the wavepacket dynamics on the ground and excited surfaces. The
initial state is described by a Boltzmann distribution of stationary continuum states. The chosen example
is photoassociation of cesium atoms at temperature T = 54 µK from the a3Σ+

u (6s, 6s) continuum to
bound levels in the external well of the 0−

g (6s + 6p3/2) potential. We study how the modification of the
pulse characteristics (carrier frequency, duration, linear chirp rate and intensity) can enhance the number
of photoassociated molecules and suggest ways of optimizing the production of stable molecules.

PACS. 33.80.Ps Optical cooling of molecules; trapping – 33.80.-b Photon interactions with molecules –
33.90.+h Other topics in molecular properties and interactions with photons – 33.80.Gj Diffuse spectra;
predissociation, photodissociation

1 Introduction

The various routes leading to the formation of cold and
ultracold molecules are actively explored [1]. Non-optical
techniques like buffer gas cooling of molecules [2] and
Stark deceleration of polar molecules [3,4] reach temper-
atures well below 1 K. Another route relies on optical
techniques, laser fields being used to cool alkali atoms
and to create excited molecules via the photoassocia-
tion reaction [5]; subsequently, these molecules are stabi-
lized, by spontaneous emission or other radiative coupling,
into bound vibrational levels of the ground electronic
state [6–11]. The translational temperatures thus reached
are much lower (T ≤ 20 µK). Such long-lived molecules
are produced in a superposition of vibrational levels, most
of which are very excited. Bringing the molecules to the
lower vibrational level (v = 0), thus making vibrationally
cold molecules, is an important issue [12].

Up to now, most photoassociation experiments are us-
ing continuous lasers, but there are a few papers treating
the photoassociation with pulsed lasers [13–15]. As for the-
ory, several time-dependent studies of photoassociation in
the ultracold regime have been proposed [16–20].

Our aim is to investigate the possibility to control cold
molecules formation by use of chirped laser pulses. In-
deed, it was shown in other applications that picosecond
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frequency-swept laser pulses produce more selective ex-
citation and better population transfer than transform-
limited pulses with the same bandwidth, due to the
mechanism of population inversion by adiabatic sweep-
ing [21–24].

Photoassociation of cold atoms with a chirped laser
pulse was first explored theoretically by Vala et al. [18],
using a Gaussian packet centered at large interatomic dis-
tance (R ≈ 200a0) as an initial state to describe the colli-
sion of two cesium atoms at the temperature T = 200 µK,
and showing that a picosecond pulse can achieve a to-
tal transfer of population under adiabatic following con-
ditions proposed by Cao, Bardeen, and Wilson [25,26].
However, such an approach cannot work at collision ener-
gies close to threshold, and if we are interested in the dy-
namics at distances small enough to produce in a further
step stable cold molecules, because a Gaussian wavepacket
does not address the actual shape of the initial continuum
state. Indeed, in an ultracold collision of two atoms, the
kinetic energy kBT becomes easily smaller than the in-
teraction potential, and the correct representation of the
initial continuum state is a thermal distribution of sta-
tionary collisional states. At a given collision energy, the
behaviour of a continuum state varies a lot with the inter-
atomic distance: at short and intermediate distances the
nodal structure is independent of energy, while at large
distances the usual plane wave behaviour is observed. As a
consequence, the distance range where the excitation takes
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place is of great importance for the photoassociation yield.
Therefore, a theoretical treatment of the dynamics at very
low temperatures needs a quite precise representation of
the initial state.

In a previous theoretical paper [20], we have consid-
ered the photoassociation of two cold cesium atoms in
their ground state with a picosecond chirped pulse that
excites several vibrational levels in the 0−g (6s + 6p3/2)
external well. This reaction has been widely studied ex-
perimentally with continuous lasers [6], so that the rele-
vant potential curves are well-known. The time-dependent
Schrödinger equation corresponding to the two-electronic
channels (a3Σ+

u (6s + 6s) and 0−g (6s + 6p3/2)) coupled by
the laser field was solved using a propagation method [27].
The use of a Mapped Sine Grid representation [28–30],
makes possible numerical calculations taking as the initial
state in the photoassociation a delocalized stationary colli-
sion state corresponding to a temperature of about 50 µK.
The chirped pulse has been designed in view of creating a
vibrational wavepacket in the excited state, which, after
the pulse, moves to shorter internuclear distances and is
focussing at the barrier of the double well potential, thus
preparing a good initial state for the stabilization process
into low vibrational levels of the a3Σ+

u (6s+6s) potential.
Besides its property of focalization, the specificity of the
picosecond chirped pulse analyzed in reference [20] is that
it leads to a strong transfer of population inside a spa-
tially limited “photoassociation window”, and no transfer
outside. Finally, the population transfer to the last vibra-
tional levels of the ground a3Σ+

u (6s + 6s) state is signifi-
cant, making stable molecules. We have shown that these
results can be interpreted in the framework of a two-state
model and in the impulsive limit [31], as an adiabatic pop-
ulation inversion taking place in the “resonance window”
swept by the pulse.

In the present work, we consider the same photoasso-
ciation reaction, and analyze how the results are modified
by acting with various pulses, in order to determine how
characteristics like duration, chirp rate and energy influ-
ence the photoassociation yield. The results obtained us-
ing pulses of different durations (ps, tens and hundreds of
picoseconds) and energies, can then be used to explore var-
ious regimes of population transfer, nonadiabatic effects,
and the eventual limits of the impulsive approximation.
Moreover, as our calculations are performed using a very
large spatial grid (thousands of a0), the results account for
the threshold effects intervening in this continuum-bound
transfer of population which takes place at very low ener-
gies and implies a large range of distances.

The paper is organized as follows: in Section 2 we
present the two-channel model used for describing the pho-
toassociation reaction with a chirped pulse and discuss the
representation of the initial state introduced to study the
photoassociation dynamics. Section 3 describes the nu-
merical methods used to perform time-dependent prop-
agation on very large spatial grids. Section 4 discuss the
choice of the pulse parameters, and treats specific features
of the excitation with a chirped pulse, such as the energy
range excited resonantly or not resonantly, and the condi-

tion for an “adiabaticity window” during the pulse dura-
tion. Section 5 compares the results obtained with pulses
differing with respect to duration, energy, and chirp rate.
In Section 6 we present calculations of the photoassocia-
tion probability from a thermal average over the incident
kinetic energies, and we estimate the number of molecules
photoassociated per pump pulse. Section 7 presents a dis-
cussion on the possible ways for the optimization of the
process. Section 8 is the conclusion. The article has three
appendix, containing: Appendix A — the energy normal-
ization of the ground state continuum wavefunction calcu-
lated in a box; Appendix B — the calculation of the chirp
rate in the time domain for focussing the excited vibra-
tional wavepacket at the inner turning point; Appendix C
— the overlap of the initial continuum with the 0−g vibra-
tional wavefunctions.

2 Two-channel model
for the photoassociation with a Gaussian
chirped pulse

2.1 The photoassociation reaction

The photoassociation reaction studied here (see Fig. 1) is
between two cold cesium atoms colliding in the ground
state potential g ≡ a3Σ+

u (6s + 6s), at a temperature
T ∼ 50 µK, which are excited by a laser pulse to form a
molecule in a superposition of vibrational levels {v} of the
excited electronic potential e ≡ 0−g (6s + 6p3/2). For a ro-
tational quantum number J = 0, it can be represented as:

Cs(6s2S1/2) + Cs(6s2S1/2) + �ω(t) →
Cs2(0−g (6s2S1/2 + 6p2P3/2); {v}, J = 0). (1)

We shall restrict to s wave (l = 0), which is a good ap-
proximation for cold collisions. For the g and e electronic
states, the potentials used in our calculation have been
described in a preceding paper [20]. The outer well of
the 0−g (6s + 6p3/2) excited potential was fitted to pho-
toassociation spectra by Amiot et al. [32] and matched to
ab initio calculations at short and intermediate range [33].
The a3Σ+

u (6s, 6s) potential has been chosen in order to
reproduce correctly the scattering length L ≈ 525a0

and the asymptotic behaviour −C6/R6 with C6 = 6828
au [32] (the short range part extracted from Ref. [34] be-
ing slightly modified for that purpose).

We consider the excitation by a chirped laser pulse
of Gaussian envelope, having a time-dependent fre-
quency ω(t)/2π which varies linearly around the central
frequency ωL/2π reached at t = tP , and red-detuned
by δat

L relative to the D2 atomic resonance line:

�ω(tP ) = �ωL = �ωat − δat
L . (2)

�ωat is the energy of the atomic transition 6s → 6p3/2.
The central frequency of the pulse, ωL/2π, or equivalently
the detuning δat

L , determines the crossing point RL of the
two electronic potentials dressed by the photon with the
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Fig. 1. Scheme of the photoassociation process with a nega-
tive chirped pulse considered in the present work, illustrated
in the case of Cs2. The potentials curves correspond to the
ground triplet state a3Σ+

u (6s + 6s) and to 0−
g (6s + 6p3/2) ex-

cited electronic state. In the present work, the energy of the
initial continuum state is neglected in the definition of the res-
onance condition. The double well behaviour in the excited
curve is a particular feature of the chosen symmetry.

energy �ωL (see Fig. 1). In the present calculations the
detuning is fixed at δat

L = 2.656 cm−1, corresponding to
RL = 93.7a0 and to resonant excitation at the maximum
of the pulse of the level v0 = 98 in the external well of
the 0−g (6s+6p3/2) potential. In this paper, for the dressed
molecule, the origin of energy is chosen at the dissociation
limit (6s + 6s) of the a3Σ+

u potential.

2.2 The two-channel coupled equations

We study the dynamics of the photoassociation process
in the ground g and excited e electronic states cou-
pled by the electromagnetic field by solving numerically
the time-dependent Schrödinger equation describing the
wavepacket motion on both surfaces.

The electric field describing a pulse with Gaussian en-
velope and linear chirp [20,25,26] has the amplitude E0, a
Gaussian envelope f(t), the carrier frequency ωL/2π, and
a phase ϕ(t) which is a quadratic function of time:

E(t) = E0f(t) cos[ωLt + ϕ(t)]. (3)

The instantaneous frequency ω(t)/2π is given by the
derivative of the rapidly oscillating term in E(t):

ω(t) = ωL +
dϕ

dt
= ωL + χ(t − tP ), (4)

and varies linearly around the central frequency ωL/2π.
In equation (4), χ denotes the linear chirp rate in the
time domain, equal to the second derivative of ϕ(t). In

the dipole approximation, for a pulse with linear polar-
ization eL, the coupling term between the two electronic
channels (g, e) is written as: −Dge(R) ·eLE(t) ≈ DeL

ge E(t),
where Dge(R) is the R-dependent matrix element of the
dipole moment operator between the ground and the ex-
cited molecular electronic states. Since the photoassocia-
tion reaction occurs at large distances (R ≥ 90a0), we ne-
glect the R−dependence, using the asymptotic value DeL

ge

deduced from standard long-range calculations [35].
In the rotating wave approximation with the instan-

taneous frequency of the chirped pulse, the coupled equa-
tions for the radial wavefunctions e±i[ωLt+ϕ(t)]/2Ψω

g,e(R, t)
in the ground and excited states can be written as [20]:

i�
∂

∂t

(
Ψω

e (R, t)

Ψω
g (R, t)

)
=

(
T̂ + V̄ (R) + ∆(R, t) WLf(t)

WLf(t) T̂ + V̄ (R) − ∆(R, t)

)

×
(

Ψω
e (R, t)

Ψω
g (R, t)

)
. (5)

Equation (5) corresponds to a rotating-frame transforma-
tion, leading to a “frequency-modulated frame” [24]. The
coupling between the two channels writes as:

WLf(t) ≤ WL

√
τL

τC
= Wmax,

WL = −1
2
E0D

eL
ge = −1

2

√
2I

cε0
DeL

ge . (6)

The diagonal terms of the Hamiltonian matrix contain the
kinetic energy operator T̂, the mean potential V̄ (R):

V̄ (R) =
Ve(R) + Vg(R)

2
, (7)

(Vg(R) and Ve(R) denote respectively the ground and ex-
cited electronic potentials) and the R- and t-dependent en-
ergy difference ∆(R, t) between the potentials dressed by
the instantaneous laser energy �ω(t) (defined in Eq. (4)):

2∆(R, t) = 2∆L(R) − �
dϕ

dt
= 2∆L(R) − �χ(t − tP ), (8)

where 2∆L(R) is the R-dependent energy difference be-
tween the two electronic potentials Ve, Vg dressed by the
mean laser energy �ωL which are crossing in RL:

2∆L(R) = Ve(R) − Vg(R) − �ωL, (9)

2∆L(RL) = 0, 2∆L(R → ∞) → δat
L . (10)

The instantaneous crossing point RC(t) between the two
dressed potentials is defined by:

∆(RC(t), t) = 0; RC(tP ) = RL. (11)
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2.3 Representation of the initial state
in the photoassociation dynamics

2.3.1 Thermal equilibrium at temperature T

The initial state of the photoassociation process is cho-
sen to describe a thermal equilibrium state in a gas of
cold alkali atoms, lying in a trap of infinite dimension
with the laser turned off (then not interacting with the
electromagnetic field), and being initially in their ground
state. In the present paper the hyperfine structure is ne-
glected. We suppose low atomic densities for which the
binary events are isolated enough, such as the Hamilto-
nian can be reduced to a summation of non-interacting
pair Hamiltonians, treated in the Born-Oppenheimer ap-
proximation [36]. Then, for a colliding pair of atoms, the
molecular Hamiltonian HM of the relative motion can be
separated from the center of mass motion which does not
play any role in photoassociation. Assuming thermal equi-
librium at temperature T , the initial state is a statistical
mixture of eigenstates corresponding to HM , described by
a density operator which can be decomposed into partial
waves l.

Restricting our study to s wave, the initial state of the
photoassociation process will be described by a density
operator ρ̂s:

ρ̂s =
1
Z

∫ ∞

0

dEe−βE|E〉〈E| (12)

with β = 1/(kBT ), kB denoting the Boltzmann constant.
Here |E〉 ≡ |3Σ+

u , l = 0, E〉 are continuum eigenstates
(normalized per unit energy) of the Hamiltonian Ĥl=0 =
P̂ 2

R/2µ + V3Σ+
u
(R) corresponding to the relative motion

(R designs the interatomic coordinate and P̂ 2
R/2µ = T̂

is the kinetic energy operator) in the electronic potential
Vg(R) = V3Σ+

u
(R) and to l = 0. Z = Tr{e−βĤM} is the

partition function for a gas composed of non-interacting
pairs of atoms in a volume V [37]:

Z = Q(T )V, Q(T ) =
(2πµkBT )3/2

h3
, (13)

with µ the reduced mass of the diatom.
The initial state (Eq. (12)) corresponds to an inco-

herent average, with relative weight e−βE over contin-
uum eigenstates l = 0 in the ground electronic surface.
Such a thermal distribution of collision states has been
introduced as initial state in the analysis of the pho-
toassociation of cold Na atoms (T ∼ 0.6 mK) through
wavepacket dynamics [16]. Other authors studying the
photoassociation of ultracold Cs atoms (T ≤ 200 µK) use
a Gaussian wavepacket [17,18]. In the following we shall
discuss the most suitable representation of the initial state
in the study of the photoassociation dynamics by time-
dependent propagation calculations. As it will be shown,
this choice depends on the detuning δat

L , on the tempera-
ture T and on the adiabatic character of the population
transfer.
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Fig. 2. (a) Stationary continuum states in the a3Σ+
u (6s + 6s)

potential, corresponding to energies E = kBT , which are cal-
culated on a grid of length LR = 19250a0 and normalized at
1 in the box. RN is the last node common to the collisional
wavefunctions in the studied domain of energies. The full thick
line represents the continuum wavefunction chosen as initial
state in photoassociation at the temperature E0/kB = 54 µK.
Other continuum wavefunctions obtained in the box are rep-
resented, corresponding to the following values of E/kB : 36.6
nK (dot-dashed line), 0.33 µK (short-dashed line), 0.11 mK
(long-dashed line), and 0.32 mK (thin continuum line). The
last bound state v′′ = 53 of the triplet potential is also shown
(with the wavefunction diminished by a factor of 5); (b) the
wavefunction corresponding to the level v0 = 98 in the outer
well of the 0−

g (6s+6p3/2) potential, which is resonant at t = tP

(Ev0 = −2.656 cm−1 under the dissociation limit 6s + 6p3/2).

2.3.2 Collisional eigenstates on the a3Σ+
u surface

Some stationary continuum states |E〉 with l = 0 in the
a3Σ+

u (6s + 6s) potential involved in the description of
the initial state (Eq. (12)) are presented in Figure 2a. As
discussed in Section 2.3.5, the energy of these scattering
states is obtained by quantization in a box with size LR

and the wavefunctions are normalized to unity in this box.
Two different behaviours are observed depending on the
R-range, leading to different possible descriptions for the
initial state.

Until RN = 82.3a0, which is the position of the last
node common to all scattering wavefunctions, all con-
tinuum wavefunctions have the same R-dependence and
therefore the same nodal structure, the potential energy
Vg(R) being larger than the kinetic energy T̂ . Therefore
the initial wavefunction for R < RN is obtained by solving
the stationary Schrödinger equation in the V3Σ+

u
potential.

The normalization of this thermal distribution depends on
the temperature.

In the range R > RN , each scattering wavefunction
with energy E has its specific nodal structure given by
the local de Broglie wavelength h/

√
2µ[E − V3Σ+

u
(R)].

Therefore at large distances R 
 RN the distribution of
continuum states is uniform and at a given temperature
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T explicit summation over continuum states |E〉 has to be
evaluated to obtain the density probability of the initial
state in a given R-range.

2.3.3 Validity of the description of the initial state
by Gaussian wavepackets

When only a narrow R-range located at R 
 RN

contributes significantly to the photoassociation process,
an uniformly R-distributed set of localized incoming
Gaussian wavepackets can be used to represent the ini-
tial state. Each wavepacket has a mean velocity v̄0 equal
to the most probable velocity of a Maxwell-Boltzmann dis-
tribution (then the corresponding momentum p0 = µv̄0 =√

2µkBT =
√〈p2

0〉, and the momentum spread is defined
as ∆pR = p0/2). The width ∆R of the radial density dis-
tribution of each wavepacket is related to the momentum
spread for the relative motion by ∆R∆pR ≈ �/2, then
depending upon the temperature [18,19].

For a sufficiently small detuning δat
L , the crossing point

RL of the electronic potentials dressed by the mean laser
energy �ωL occurs at large distance. For excitation with
a continuous laser, the photoassociation process is reso-
nant at RL, which determines the R-domain governing
the dynamics of the process. Then the vibrational level
resonantly populated in the 0−g surface has its external
turning point close to RL (see Fig. 2 where RL ∼ RN ).
For the photoassociation with a chirped pulse, other fac-
tors such as the duration, the intensity of the pulse and
its chirp rate (see Sect. 4.3), strongly influence the dis-
tance range which can be excited. As seen in [20] these
parameters determine the adiabaticity properties of the
population transfer. For sufficiently short pulses for which
the impulsive approximation is valid [31] and for adia-
batic transfer, only a small R-window located around RL

contributes to the dynamics [20], which strongly reduces
in the completely delocalized initial state the effective R-
range responsible for the dynamics.

For sufficiently high temperatures T , one can expect
that the kinetic energy dominates the interaction potential
with behaviour V3Σ+

u
(R) ∼ −C6/R6 at large R distances.

The latter condition can be written:

kBT 
 C6

R6
, (14)

resulting in a relatively uniform R-dependence in the
wavefunctions |E〉 which behave as plane waves.

Therefore for a sufficiently small detuning δat
L and for

sufficiently high temperature T , when the laser pulse in-
duces an adiabatic population transfer within a photoas-
sociation window, the dynamics of the photoassociation
process can be analyzed by choosing as initial state a single
Gaussian wavepacket centered at RL, if the T -dependent
width ∆R of the Gaussian wavepacket is larger than the
spatial width of the photoassociation window. With this
description of the initial state it is possible to analyze the
dynamics of the photoassociation process but the absolute
value of the photoassociation rate cannot be calculated.

Gaussian wavepackets have been successfully used in
the study of photoassociation with a chirped pulse [18]
at a large distance RL = 200a0 and at the temperature
T = 200 µK, for a pulse duration (75 ps) sufficiently small
to avoid observable motion on the ground surface, but suf-
ficiently large to correspond to a photoassociation window
narrower than the width of the Gaussian wavepacket.

On the opposite, in a previous paper [19] studying the
photoassociation with a continuous laser in the electronic
state 1g(6s + 6p3/2) of Cs2, at RL = 90a0 and for a tem-
perature T = 125 µK, we have shown that a Gaussian
wavepacket having a large radial width and a small mo-
mentum p0 is spreading more rapidly than it is moving;
since it was quite difficult to gain insight on the relevant
dynamics by using it, a possible choice was to consider
a much smaller spatial width, implying a bigger momen-
tum spread. Components with much bigger momenta are
then introduced in the representation of the initial state,
falsifying the dynamics in the corresponding channel.

2.3.4 Evaluation of the initial density matrix by stationary
collisional eigenstates

In the case of the a3Σ+
u (6s + 6s) state of Cs2, for the

temperature T ≈ 50 µK studied in the present paper, the
relation (14) is valid for R 
 185a0, which corresponds
to resonant excitation of vibrational states with v 
 130
in the 0−g (6s + 6p3/2) external well, or to a laser detuning
δat
L � 0.35 cm−1. At T ≈ 50 µK (a collision with rela-

tive velocity v̄0 ≈ 10 cm/s), the width corresponding to a
radial wavepacket is very large: ∆R ≈ 160a0 (in cold col-
lisions the large de Broglie wavelength describing the rela-
tive motion is the sign of the wavefunction delocalization).
Therefore at T ∼ 50 µK the representation of the initial
state by Gaussian wavepackets cannot be used if we are
interested in the real dynamics at small distances and in
the initial molecular channel, because it hardly addresses
properly the physics at distances different from RL. Then
it is absolutely necessary to account for the nodal struc-
ture of the ground state wavefunction, which is responsible
for the intensity minima observed in the photoassociation
spectra [1].

This is the case for the example studied in the present
paper which concerns the photoassociation in the 0−g (6s+
6p3/2) channel in Cs2, at a detuning δat

L ≈ 2.4 cm−1,
RL ≈ 94a0, and T ≈ 50 µK. Indeed, in this case RL ∼ RN

(see Fig. 2), and it is necessary to describe the initial
state as an incoherent average over a thermal distribu-
tion of stationary energy-normalized continuum wavefunc-
tions |E〉, as in equation (12). Several time-propagation
calculations are performed, each using a particular initial
state |E〉 of the thermal energy distribution and corre-
sponding to a density probability |ΨE

0−
g
(R, t)|2 transferred

at the time t in the 0−g surface. Then the total density
probability corresponding to the thermal distribution at
temperature T is obtained from the incoherent average:
(1/Z)

∫ ∞
0

e−βE |ΨE
0−

g
(R, t)|2dE (see Eq. (34) in Sect. 6). In

the present work we begin by performing time-dependent
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photoassociation calculations taking as initial state a sin-
gle continuum state |E0〉 of the thermal energy distribu-
tion (Sect. 5); next, the photoassociation probability is
calculated as a thermal average over the incident kinetic
energies (Sect. 6) leading to an estimation for the absolute
value of the photoassociation rate.

2.3.5 Discretization and energy-normalization
of the scattering spectrum

In our method, the eigenstates of the Hamiltonian asso-
ciated with the ground electronic channel are calculated
through the Sine Grid Representation [28–30], in a large
box of radius LR which introduces a discretization of the
continuum (only continuum states having a node at the
boundary of the box are obtained) and supplies wavefunc-
tions normalized to unity in the box. We shall label En > 0
the energies of these states and φEn(R) the corresponding
wavefunctions having n nodes in the range RN < R < LR

(n ≥ 0 integer). The energy resolution in a box of length
LR is determined by the energy difference δE correspond-
ing to neighbouring eigenstates of the box:

δE |En=
∂E

∂n
|E=En=

�π

LR

√
2En

µ
=

�
2π2

µL2
R

n. (15)

Then a large box is necessary to have a sufficiently high
energy resolution (small δE), able to represent low ener-
gies corresponding to the temperature T ≈ 50 µK. For
the present calculations we use a box with the width
LR = 19250a0, in which the continuum state having
the energy En = kBT , with T = 54 µK, is the 38th
state in the corresponding discretized continuum. This
leads to a resolution at threshold δE/kB = 30 nK and
(1/kB)(∂E/∂n) |E/kB=54 µK= 2.6 µK for the continuum
description around 54 µK. Such a large box allows to ac-
count correctly for the threshold behaviour in the cold
collision process and to perform explicitly an average on
the thermal energy distribution (see Sect. 6).

For an energy resolution δE, the maximum relevant
time scale which can be studied in the problem is τmax =
�/δE. Any energy spacing smaller than δE is not resolv-
able in the box of length LR (for example, an eigenstate
characterized by a vibrational period bigger than τmax

cannot be distinguished from the continuum positive en-
ergy states in the box determined by this LR). In the
present case τmax is 2.9 µs, being larger than the radiative
lifetime in the 0−g state, τrad ≈ 15 ns; but the spontaneous
emission is not introduced in the present problem, where
the dynamics is followed for times smaller than τrad.

The representation of the initial density matrix by sta-
tionary continuum states needs a normalization per unit
energy of the continuum wavefunctions. The basic formu-
lae are shown in the Appendix A: one shows that the re-
lation between the wavefunctions ΨEn(R) normalized per
unit energy and the wavefunctions φEn(R) normalized to
unity in the box is the following:

ΨE=En(R) =
[
∂E

∂n
|E=En

]−1/2

φEn(R). (16)

In the present Grid representation the density of states is
calculated explicitly from the energy spacing between two
neighbouring states of the discretized continuum:

∂E

∂n
|E=En= En+1 − En. (17)

3 Numerical methods

The dynamics of the photoassociation process is per-
formed by numerical solution of the time-dependent
Schrödinger equation (5) for the ground Vg(R) and excited
Ve(R) potentials coupled by the electromagnetic field, tak-
ing as initial state Ψg(R, 0) a stationary continuum state
of the ground surface of very low energy E = kBT , cor-
responding to a temperature T = 54 µK. A grid of very
large extension is needed to represent correctly such an
initial state and the last bound states of the ground po-
tential which are populated during the photoassociation
process, and whose wavefunctions extend at large inter-
atomic distances. We consider a grid extending from L0

(a distance slightly smaller than the repulsive walls in the
potentials, here L0 = 8a0) to LR = 19250a0 in the present
paper. This very large grid allows to represent correctly
the wavefunctions implied in the process and to account
for the threshold behaviours at low energies in the realistic
potentials.

3.1 Spatial representation of the wavefunctions

The radial dependence of the wavepackets Ψe,g(R, t) prop-
agating on both surfaces is represented using Mapped Grid
Methods [29,30]. The mapping works with a change of
variable (from R to the adaptive coordinate x) taking ac-
count of the variation of the local de Broglie wavelength
Λ(E, R) = h/

√
2µ[E − Vg(R)] = 2π�/pR as a function

of the internuclear distance R. Namely, the Jacobian of
the transformation is chosen proportional to the local de
Broglie wavelength: J(x) = dR/dx = βΛ(Emax, R), where
Emax is the maximum energy involved in the problem.
This leads to the implementation of a large spatial grid
by using only a small number of points. For example, in
our calculations we use N = 1023 points for a spatial
extension LR = 19250a0, uniformly describing regions of
space where Λ(Emax, R) varies by several orders of magni-
tude. The use of an enveloping potential Venv(R) (equal to
or deeper than the crossing Ve and Vg potentials dressed
by the field) allows the definition of a common Jacobian
and therefore a single x-grid to describe both surfaces. In
the new coordinate x, the kinetic energy operator is ex-
pressed simply as product of operators J(x)−1/2 and d/dx,
improving the numerical accuracy [29,30]. The potential
energy operator reduces simply to V (x).

A collocation method [29,30] is used to define the
representation of the wavefunctions in the N points xi

of the grid (x). This supposes that any wavefunction
Ψ̄(x) is expanded on a set of N basis functions. Instead
of the usual plane wave expansion (Fourier expansion),
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we use the Sine expansion recently introduced by Willner
et al. [30]. All basis sine functions have nodes at the
boundaries L0 and LR of the grid, which, by choosing
a sufficiently small β-value [30], permits the suppression
of the so-called “ghost” levels appearing in the solution of
the stationary Schrödinger equation and then susceptible
to falsify the dynamics of the system. We have verified that
a value β = 0.52 is necessary for avoiding the appearance
of “ghost” levels.

To determine the stationary eigenstates of the ground
or excited potential (which are used either for the selection
of the initial state, or to analyze the wavepackets evolution
in terms of their decompositions on stationary states) an
auxiliary cosine basis set is introduced, allowing to eval-
uate analytically the first order derivatives d/dx involved
in the kinetic energy operator [30].

In time propagation calculations one has to multiply
repeatedly the initial state wavefunction by the Hamilto-
nian matrix. Therefore one has to express the kinetic en-
ergy operator in terms of discrete sine and cosine Fourier
transformations [38], for which we use the efficient fast
Fourier algorithms. This imposes N = 2p − 1 (p integer)
for the number of grid points (N = 1023 for the present
calculation).

Lastly, in time propagation calculations the initial
state is normalized to unit in the box of size LR. Therefore
the populations P0−

g
(t) or P3Σ+

u
(t) calculated at a time t

are depending on the value chosen for LR. Nevertheless,
due to the normalization condition P0−

g
(t) + P3Σ+

u
(t) = 1,

which is verified for every t, the calculations give directly
the relative population on each surface.

3.2 Time evolution

The time-dependent Schrödinger equation for the two
coupled channels (see Eq. (5)) is solved by propagating
the initial wavefunction using a Chebychev expansion of
the evolution operator exp[−iĤt/�] [27,28]. Propagation
is performed in discrete steps with a time increase ∆t
much shorter than the characteristic times of the prob-
lem (pulse duration, vibrational periods, Rabi periods).
In the present study of photoassociation with chirped
pulses the Hamiltonian H(t) is explicitly time-dependent,
and a discrete description of H(t) is introduced. During
the step corresponding to time propagation from t1 to
t2 = t1 + ∆t, the Hamiltonian is supposed to be time-
independent and chosen as H(tm), where tm = (t1+t2)/2.
Such a procedure introduces errors of the order of magni-
tude (∆t)3. Since presently the initial state is a station-
ary collisional eigenstate in the 3Σ+

u potential, instead of
a Gaussian wavepacket, the dynamics results only from
coupling with the laser pulse, but not from the motion
characteristic of the evolution of a nonstationary state.
Moreover, the dynamics is studied within a very large box.
Consequently, even after a very long propagation duration
of 15 ns (the order of magnitude of the spontaneous emis-
sion time for the vibrational levels excited in the 0−g state),
the wavepackets dynamics in the range of distances rele-
vant for our problem (in which the hyperfine structure is

neglected) is not influenced by the external boundary of
the box. Therefore there is no reflection of the wavepack-
ets at LR and then it is not necessary to define outgoing
wave boundary conditions for the wavepackets (either by
transferring the outgoing part to another grid [39] or by
introducing an imaginary absorbing potential [40]).

In the present problem, using a grid with N =
1023 points, which for β = 0.52 gives a box of extension
LR = 19250a0, the energy resolution at the 3Σ+

u dissoci-
ation threshold is determined by δE/kB ≈ 100 nK. For a
grid with only 511 points, the extension is reduced by a
factor of about 7.8 and the energy resolution is strongly
diminished, as δE/kB ≈ 6 µK. Since we study the pho-
toassociation taking an initial stationary state correspond-
ing to T ≈ 50 µK, a grid of large extension is needed
to reach the necessary resolution in the representation of
the threshold processes. As we have shown before, this is
possible due to the mapping procedure, which drastically
reduces the number of grid points, and to the implemen-
tation of the Sine Basis representation, which eliminates
the participation of the “ghost levels” in the dynamics.

For the step-size ∆t ≈ 0.05 ps used in our time propa-
gation, ĤΨ is calculated 112 times during each interval ∆t.
Therefore the implementation of the fast Fourier trans-
formations to calculate T̂ Ψ avoids prohibitive calculation
times, allowing in principle to study the evolution of the
wavepackets during time durations as long as 10 ns (which
corresponds to a repetition rate of 108 Hz for the photoas-
sociating laser pulse). Obviously, such long evolution times
need to introduce in the problem other physical processes,
such as the spontaneous emission (τrad = 15 ns), which is
not taken into account in the present calculations.

4 Excitation with chirped pulses: optimizing
the pulse

4.1 Parameters for Gaussian pulses with linear chirp

We consider pulses with Gaussian envelope and linear
chirp, as discussed in references [20,25,26]. Since both the
amplitude and the frequency of the electric field E(t) de-
fined in equation (3) are time-dependent, the pulses are
characterized by various parameters that should be opti-
mized. The first parameter τC characterizes the temporal
width of the Gaussian envelope f(t) in the amplitude E(t)
(Eq. (3)):

f(t) =
√

τL

τC
exp

[
−2 ln 2

(
t − tP

τC

)2
]

, (18)

which is maximum at t = tP and has the full width at half
maximum (FWHM) equal to

√
2τC .

Next, the duration τL characterizes the spectral width
δω = 4 ln 2/τL in the frequency domain: indeed, Ẽ(ω),
which is the Fourier transform of E(t), displays a Gaussian
profile with FWHM equal to

√
2δω.

The ratio τC/τL characterizes the chirp. The linear
chirp is determined by the chirp rates: χ in the time do-
main (calculated as the second derivative of the phase ϕ(t)
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of the field E(t), see Eq. (3)), and Φ′′ in the frequency do-
main (the second derivative of the phase of Ẽ(ω)), so that
the ratio τC/τL reads:

τC

τL
=

√
1 + (4 ln 2)2

(Φ′′)2

τ4
L

=

√
1 +

χ2τ4
C

(4 ln 2)2
. (19)

The condition τC = τL corresponds to an unchirped
transform-limited pulse with duration τL, and in the gen-
eral case the duration is stretched to τC by chirping, so
that τC/τL ≥ 1. The choice of τL and χ determines the
pulse duration τC (see Eq. (19)), and then the chirp rate
in the frequency domain:

Φ′′ = χ
τ2
Cτ2

L

(4 ln 2)2
(20)

with two possible values for both quantities, as discussed
below in Section 4.2. Among the four parameters τC , τL, χ
and Φ′′, only two are independent (see Eqs. (19) and (20)).

Another independent parameter is the coupling WL

defined in equation (6), depending upon the intensity IL

and the dipole transition moment. Chirping a pulse in-
creases its duration and decreases its maximum ampli-
tude: EM = E0

√
τL/τC ≤ E0. As a result, the chirp does

not change the energy Epulse carried by the field, which
is proportional to the square of the amplitude E0 and
to the temporal width τL of the transform limited pulse:
Epulse = (cε0/2)

∫ +∞
−∞ |E(t)|2dt = (ILτL/2)

√
π/ln 2, with

IL = (cε0/2)/E2
0 (c is the velocity of light and ε0 the vac-

uum permittivity).
Therefore, for a given central frequency ωL, the choice

of three independent parameters (WL, and two of the
four parameters discussed above) will determine the main
properties of the pulse and in particular the adiabatic
character of the population transfer.

4.2 The choice of the chirped pulse parameters

There are many possibilities for the design of chirped
pulses, and their choice will depend upon the objective
of a given experiment. In the present paper, our choice is
to fix the carrier frequency ωL/2π (or, equivalently, the
detuning δat

L ), the coupling WL (or the intensity IL), and
the chirp rate χ in the time domain. On the other hand,
we shall study pulses of different durations τL (or var-
ious spectral widths δω), leading to different situations
for the energy range 2�|χ|τC (see Ref. [20]) swept by the
central frequency, for the maximum Wmax = WL

√
τL/τC

of the coupling, and for the energy of the pulse Epulse

(proportional to W 2
LτL). Our choice to keep WL constant

differs from experimental situations where it is easier to
keep Epulse constant, shorter pulses having larger maxi-
mal intensity. Fixing the coupling WL, instead of Epulse,
leads to situations as various as possible for either the
photoassociation yield or the dynamics of the process. In-
deed, the pulses which are studied induce quite different
excitation regimes, due to their characteristics: narrow or

broad bandwidth δω, short or long duration τC , small or
large chirp Φ′′ inducing various ratios τL/τC and various
energies Epulse.

The objective of this work is to analyze the properties
of the photoassociated wavepacket as a function of the
pulse. We shall study the photoassociation yield and the
radial distribution of population transferred in the 0−g sur-
face at the end of the pulse, but also the evolution of the
wavepackets after the pulse (vibration in the 0−g potential
and acceleration to the inner region). An important goal
is to gain information about the degree of coherent con-
trol in the photoassociation process: for example we are
interested to maximize the population localized at small
distances in the 0−g potential (internuclear distances more
favorable to radiative stabilization of the photoassociated
molecules, by spontaneous or stimulated emission, towards
the ground potential surface).

• Detuning. We present here calculations for pho-
toassociation with different pulses at the same detun-
ing δat

L = 2.656 cm−1, corresponding to a crossing point
RL = 93.7a0. The detuning is chosen such as δat

L = Ev0 ,
the binding energy of the v0 = 98 level in the external
well of the 0−g (6s + 6p3/2) potential, which means that at
t = tP there is a resonance condition between the contin-
uum state lying at threshold (E = 0) and this vibrational
level. Taking into account that the initial collisional state
considered here corresponds to a very low temperature
T = 54 µK, and to an energy E0 = kBT much smaller
than the vibrational energy spacing in the 0−g (6s + 6p3/2)
potential ((Ev0 − Ev0−1)/E0 ≈ 3300), the initial state E0

is in resonance with the v0 vibrational level.

• Intensity IL and Coupling WL. Also, we consider the
same laser intensity IL and then the same coupling WL

for all the pulses. But the pulses with different durations
τL correspond to different energies Epulse ∼ ILτL. For
laser excitation with π polarization between the electronic
states 3Σ+

u (6s, 6s) and 0−g (6s+ 6p3/2), and neglecting the
R-variation of the dipole coupling, the intensity is related
to the coupling WL by equation (6), giving WL (a.u.) =

9.74× 10−9

√
IL(W/cm2) [35]. In the present calculations

the laser intensity is IL = 120 kWcm−2, giving a coupling
WL = 0.7396 cm−1. By chirping the pulse, the instanta-
neous coupling becomes W (t) = WLf(t) ≤ Wmax.

• Chirp rate χ in the time domain. Focussing. The
linear chirp parameter χ has been designed in order to
achieve, at a time t = tP +Tvib(v0)/2 (where Tvib(v0)/2 =
125 ps is half the vibrational period of the level v0 = 98),
the focussing of the excited vibrational wavepacket at the
internal turning point of the vibrational state v0 in the 0−g
outer well. The chirp parameter necessary to compensate
the dispersion in the vibrational period of the wavepacket
is chosen as χ = −2πTrev(v0)/[Tvib(v0)]3, i.e. adjusted to
match the revival period Trev (see Appendix B) of the res-
onant level v0 = 98. This leads to χ = −4.79×10−3 ps−2 =
−0.28× 10−11 au, and �χ = −0.025 cm−1 ps−1.
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Table 1. Parameters of Gaussian pulses considered in this work, linearly chirped with the same rate χ in the time domain, and
corresponding to the laser intensity at t = tP for the transform limited pulse IL = 120 kWcm−2, which, for a linear polarization
of the electric field, gives a coupling WL = 0.7396 cm−1 for the a3Σ+

u (6s, 6s) → 0−
g (6s, 6p3/2) transition at large interatomic

distances. The central frequency of the pulse, ωL/2π, resonantly excites the v0 = 98 level of the 0−
g (6s, 6p3/2) outer well, with

binding energy Ev0 = 2.656 cm−1 and vibrational period Tvib(v0) = 250 ps. The significant parameters listed below are: temporal
width τL of the initial pulse before chirping, spectral width �δω, chirp rate Φ′′ in the frequency domain, temporal width τC

of the chirped pulse, the ratio
√

τL/τC , the chirp rate χ in the time domain, the energy range �|χ|τC resonantly swept by the

pulse during the period [−τC , τC ], the maximum coupling Wmax = WL

√
τL/τC = W (tP ), and the parameter αmax indicating

a limit for the adiabaticity range [−ατC , ατC ] (α � αmax). The probability of photoassociation in the 0−
g surface at the end

of the pulse (corresponding to a total population normalized at 1 on the grid), noted P
0−g

(E0), is also shown (E0 is the energy

of the initial continuum state, E0/kB = 54 µK). In a trap of volume V = 10−3 cm3, containing 108 atoms at the temperature
T = 50 µK, the number of molecules photoassociated per pump pulse N is related to P

0−g (E0) by: N ∼ 2000P
0−g (E0). The

characteristics of the chirped pulse studied in reference [20] are reported in the last line.

�δω (cm−1) Φ′′ (ps2) τC (ps)
√

τL
τC

χ (ps−2) �|χ|τC (cm−1) Wmax (cm−1) αmax P
0−g (E0)

τL = 1 ps 14.72 −0.00063 1.002 0.999 −4.79 × 10−3 0.025 0.739 1.12 3.961 × 10−2

−208.8 581 0.042 14.52 0.031 − 3.941 × 10−2

τL = 6 ps 2.453 −0.81 6.012 0.999 −4.79 × 10−3 0.15 0.739 1.12 2.168 × 10−2

−207.99 96.28 0.249 2.41 0.184 0.5 6.005 × 10−2

τL = 12 ps 1.227 −13.84 12.41 0.983 −4.79 × 10−3 0.31 0.727 1.11 3.046 × 10−4

−194.96 46.6 0.507 1.17 0.375 0.87 5.340 × 10−4

τL = 15 ps 0.981 −38.51 16.60 0.950 −4.79 × 10−3 0.42 0.703 1.10 1.200 × 10−4

−170.00 34.8 0.657 0.87 0.486 0.95 3.245 × 10−4

• Pulse duration τC . τL and χ being chosen, τ2
C is so-

lution of the second order equation:

τ4
C − (4 ln 2)2

χ2τ2
L

τ2
C +

(4 ln 2)2

χ2
= 0 (21)

which gives, as for Φ′′, two values of the pulse duration τC

for a given pair (τL, χ). In fact, with the relation (20) one
can see that the chirp rate in the frequency domain Φ′′
is then determined; pulses with the longer duration τC

correspond to the higher rate Φ′′ in the frequency domain.
• Temporal width τL of the pulse before chirping. Equa-

tion (21) shows that the existence of real values of Φ′′
and τC requires:

τL ≤
√

2 ln 2
|χ| , (22)

imposing an upper limit for the value of τL which can still
be chosen for a fixed value of χ. On the other hand, one
can choose to avoid the excitation of the 0−g continuum
during the photoassociation process. Such a requirement
is related to a lower limit for the initial temporal width τL,
the spectral width of the pulse having to be smaller than
the detuning δat

L :

�δω = �
4 ln 2
τL

< δat
L =⇒ τL > �

4 ln 2
δat
L

. (23)

For the detuning δat
L = 2.656 cm−1 and the chirp rate χ =

−4.79×10−3 ps−2 leading to focussing, the conditions (22)
and (23) give the following interval of choice for τL:

5.54 ps < τL ≤ 17 ps, (24)

corresponding to predominant excitation of bound vibra-
tional levels 0−g .

For 0 < τL < 5.54 ps, continuum states of 0−g local-
ized at large distances are mainly excited. Let us remark
that the border between excitation of bound or contin-
uum states is not well defined, it only corresponds to the
FWHM of the spectral energy distribution, without tak-
ing into account the absolute intensity of the pulse. In the
interval described by the relation (24), the excitation of
continuum will become important for an increasing inten-
sity IL. The characteristics of the pulses studied in the
present paper are reported in Table 1, which also shows
those of the pulse studied in reference [20].

4.3 The energy range corresponding to a large
population transfer induced by the chirped pulse

The impulsive approximation [20,31] can be used to qual-
itatively determine the spatial range in which the popu-
lation transfer from the ground to the excited surface is
important. Let’s take the example of a two-level system
with energy splitting �ωeg = �(ωe − ωg) which is excited
by a pulse characterized by a spectral energy distribution
|Ẽ(ω)|2 (centered on the mean laser pulsation ωL, FWHM
δω, and maximum proportional to the laser intensity I).
Longtime after the end of the pulse, and in the perturba-
tive approximation, the population in the excited level is
given by µ2

ge|Ẽ(ωeg)|2, where µge is the dipole moment of
the transition. Therefore this population grows up when
µge or I increase and when the detuning ωeg − ωL de-
creases, being maximum at the resonance (ωeg = ωL).



248 The European Physical Journal D

Similar considerations apply for population transfer
from the ground to the excited surface; it is favoured: (i) at
resonance (i.e. at the instantaneous crossing point Rc(t)),
(ii) for a large overlap integral |〈3Σ+

u E0|0−g v〉|2 between
the initial collisional wavefunction and the resonantly ex-
cited vibrational level v having its outer turning point
close to Rc(t), and (iii) for large laser intensities.

For a Gaussian pulse, 98% of the energy is carried dur-
ing the time interval [−τC , +τC ], and then the effect of the
pulse can be estimated by analyzing it during this tempo-
ral window [20]. During this time interval, the instanta-
neous crossing point RC(t) defined by the relation (11)
varies in time, describing a resonance window; the energy
range resonantly swept by the pulse around the central
frequency ωL/2π is 2�|χ|τC , which is limited by its spec-
tral width [20]. Indeed, |χ|τC ≤ δω, with a ratio depending
on the chirp rates:

|χ|τC

δω
=

√
Φ′′χ =

√
1 −

(
τL

τC

)2

≤ 1. (25)

Then, vibrational levels lying in the “resonance window”
will be excited by the pulse at different times.

Besides, the large overlap of the initial continuum
wavefunction with the 0−g vibrational wavefunctions of lev-
els close to the dissociation limit is especially favorable to
population transfer at very large distances. Indeed, the
overlap integral has a large maximum for vibrational lev-
els having outer turning points at large distances R, close
to the dissociation limit (see Appendix C, Fig. 12).

Furthermore, for a large laser intensity, off-resonant
excitation can easily become efficient. This is particularly
true for cold photoassociation at small detunings if the
coupling and detuning have comparable values, leading to
noticeable excitation outside the resonance window.

Then, it is interesting to note that using a chirped
pulse for such free-bound transitions close to the dissocia-
tion limit, it is possible to control the excited energy range
by the pulse characteristics, in order to avoid the popu-
lation of the continuum or to restrain the spatial range
covered by the final 0−g packet. Indeed, in addition to the
spectral width δω (determined by τL for both transform
limited or chirped pulses), one can select the range of the
window |χ|τC to be excited resonantly, by choosing the
chirp parameters Φ′′, χ, or, equivalently, the ratio τL/τC

(see Eq. (25)).
Lastly, the pulse intensity IL will determine the adia-

batic or non-adiabatic character of the transfer (this will
be detailed in Sect. 4.4), and the importance of the off-
resonance excitation. Nevertheless, the estimated bound-
ary between resonant and off-resonant excitation remains
approximative.

4.4 Condition for an “adiabaticity window”
during the pulse duration

Efficient adiabatic population inversion can be obtained
by using a chirped laser pulse, which in a two state sys-
tem allows to sweep the instantaneous frequency ω(t) from

far above (respectively far below) to far below (respec-
tively far above) resonance. Sufficiently slow sweeping in-
duces total adiabatic transfer from one state to the other
one [20,24–26].

In a previous work [20] we have analyzed adiabatic
population inversion within the impulsive limit [31], as-
suming that the relative motion of the two nuclei is frozen
during the laser interaction, i.e. τC � Tvib(v0), where
Tvib(v0) = 250 ps is the vibrational period of the 0−g level
resonantly populated at t = tP . By neglecting the kinetic
energy operator appearing in the two-level Hamiltonian
of equation (5), one can introduce a coordinate-dependent
two-level model able to define the conditions for full adi-
abatic population transfer. At the instantaneous crossing
points RC(t), the nonadiabatic effects can be explored us-
ing the adiabaticity condition, which in these points takes
a simple form determined by the pulse shape (|χ| and
τC/τL) and its intensity (IL or WL) [20]:

�
2|χ| � 8(W (t))2. (26)

The condition (26) will not be verified when W (t) be-
comes very small. Then, it is useful to estimate the do-
main [−ατC , ατC ], with α > 0, for which the adiabaticity
condition (26) is verified. For |t− tP | < ατC , the coupling
W (t) has the lower bound Wmax/4α2

, so α can be deduced
from the condition:

16α2

8
�

2|χ|τC

τL
� W 2

L, (27)

giving:

α �
√

1
ln 16

ln
{

8
1

�2|χ|W
2
L

τL

τC

}
= αmax. (28)

For α � αmax, the adiabaticity condition (27) is very
well satisfied during all the time interval [−ατC , ατC ].
For α ≈ αmax, the transfer can be adiabatic during a
certain portion of this interval, but strong non-adiabatic
effects appear at the boundary |t − tP | ≈ αmaxτC . For
8(1/�

2|χ|)W 2
L(τL/τC) < 1 (small intensity IL and/or large

chirp |χ|τC/τL), adiabaticity never occurs, αmax not be-
ing defined. The values αmax corresponding to the pulses
studied here are given in the table.

For a given pulse, αmax offers an approximate evalu-
ation for the extension of the time interval [−ατC , ατC ],
with α � αmax, during which the adiabaticity condition
can be verified at the instantaneous crossing points. For
fixed |χ| and WL, it is the ratio τL/τC which fixes the
time-interval during which crossing of the two potentials
can lead to population inversion due to adiabatic passage.
Then, in the “window” [Rmin, Rmax] swept by the instan-
taneous crossing point, total population inversion occurs.
In addition, if, at large distances, the two dressed potential
curves do not cross and the dynamics is adiabatic dur-
ing the time interval [−ατC , ατC ], no population trans-
fer occurs. As a result, population transfer occurs only
in the range [Rmin, Rmax] defining an “adiabaticity win-
dow” [20,24,26].
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Fig. 3. Time-dependent Gaussian envelopes f(t) of the linearly chirped pulses considered in this paper, all having the same
chirp rate χ = −4.79 × 10−3 ps−2 in the time domain, but different τL values, stretched to τC . At each chosen τL value
correspond two values τC , as explained in the text. The maximum of the pulse, f(tP ) =

√
τL/τC , decreases when the time

width τC increases. (a) Chirped pulses with τC ≈ τL = 1 ps, 6 ps and 12 ps, centered at tP = 150 ps. (b) Chirped pulse with
τC = 581 ps (τL = 1 ps), centered at tP = 1500 ps. (c) Chirped pulses with τC = 96 ps (τL = 6 ps) and τC = 47 ps (τL = 12 ps),
both centered at tP = 1000 ps. The horizontal broken line indicates the value from which the pulse becomes efficient in the
population transfer. For the same intensity IL of the laser, the pulses having the same initial τL correspond to the same energy
Epulse = (ILτL/2)

√
π/ln 2, carried by the field.

5 Results for photoassociation with pulses
of different durations, starting from a single
scattering state |E0〉

In the calculations presented in this section, we use
as initial state a single scattering state |E0〉, with
E0/kB = 54 µK. The main characteristics of the photoas-
sociation dynamics and of the population transferred by
the pulse are analyzed with the goal of optimizing the pho-
toassociation rate. Average over the various states |E〉 in a
thermal distribution will be discussed below in Section 6.

We consider pulses generated with three initial tem-
poral widths: τL = 1 ps, 6 ps and 12 ps, and which
are chirped with the same chirp rate in the time do-
main: χ = −4.79 × 10−3 ps−2. The characteristics of the
pulses are given in Table 1. The impulsive limit is valid
for all these pulses, except the pulse with τC = 581 ps
(τL = 1 ps).

As discussed before, for fixed χ, to each given value
τL (determining the spectral width δω ∼ 1/τL and the
total energy of the pulse Epulse ∼ ILτL) correspond two
chirped pulses with very different characteristics: one has
τC ≈ τL, being “almost no-chirped”, and the other is a
“really chirped” one, having a much larger temporal width
than the initial pulse. The envelopes of the 6 pulses thus
built are shown in Figure 3. For each pulse we shall ana-
lyze the resulting photoassociation dynamics: the relative
population yield transferred to the 0−g state (for a total

population normalized at 1 on the grid), its radial distribu-
tion, and the modification of the density probability in the
initial a3Σ+

u (6s, 6s) |E0/kB = 54 µK〉 state. Our aim is to
analyze their efficiency for the photoassociation reaction,
the main criterion being a maximum transfer of popula-
tion from the initial a3Σ+

u (6s, 6s) |E0〉 continuum state to
bound vibrational levels of the 0−g (6s, 6p3/2) excited state:
this means that we are interested in those pulses capable
to take the population located at large distances in the
initial continuum and to put it in the 0−g (6s, 6p3/2) exter-
nal well, in such a way that most of this population will
be present at small distances with a small delay after the
end of the pulse. Maximizing the population transferred
to the inner region of the excited potential (R < 100a0) is
a first step in a process leading to an efficient formation
of cold stable molecules.

The comparison between the pulses described before
can be made from two points of view: (i) one can compare
“really- chirped” and “almost no-chirped” pulses, by look-
ing at results given by the pulses with the same τL (the
same spectral width �δω and the same energy Epulse), and
(ii) one can analyze the main differences between the re-
sults given by short pulses with a large spectral bandwidth
and those given by much longer pulses with a narrower
spectral width.

Several comments are to be made about what we could
expect from these pulses, given the values illustrated in
Table 1, and the fact that the detuning corresponding to
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the 0−g (6s, 6p3/2) level v0 = 98 excited at t = tP is δat
L =

2.656 cm−1.

First, we can note that the shorter pulses with
τL = 1 ps and τL = 6 ps have the spectral widths
�δω = 14.72 cm−1, much larger than δat

L = 2.656 cm−1,
and 2.453 cm−1, of the same order of magnitude as δat

L .
This means that, for τL = 1 ps, the 0−g (6s, 6p3/2) contin-
uum will be massively excited. The pulses with τL = 12 ps
have the spectral bandwidth �δω = 1.227 cm−1 smaller
than δat

L , which avoids to noticeably populate the 0−g con-
tinuum (except if the intensity is too strong, see Sect. 4.3).

Second, the horizontal line in Figure 3 indicates the
value above which the instantaneous coupling strength
WLf(t) becomes efficient in the population transfer. The
“efficient time durations” of the studied pulses are gen-
erally of the same order of magnitude as τC , excepting
the pulse with τC = 581 ps (τL = 1 ps), for which the
effective interval is reduced by a factor of ≈4: indeed, due
to the strong decrease of Wmax by the chirp (small ratio√

τL/τC) only a small fraction of the pulse represented in
Figure 3b can produce population transfer.

Another aspect refers to the value of the detuning
δat
L /2 = 1.328 cm−1 which is always larger than the max-

imum coupling Wmax of the studied pulses (see Tab. 1).
Therefore at t = tP , the off-resonant Rabi coupling at very
large distances R∞ [20]:

�Ω(tP , R∞) =

√
W 2

max +
(

δat
L

2

)2

(29)

will be larger than the resonant coupling Wmax at RL

(indeed, for the pulses listed in Table 1, the values of
�Ω(tP , R∞) are between 1.3 and 1.4 cm−1, the corre-
sponding Rabi periods TRabi = π/Ω varying between 11
and 12.5 ps). This means that, for this small detuning, the
field is strong enough to couple the two channels at very
large distances, well beyond what we could expect from
the estimated energy range 2�|χ|τC resonantly swept by
the pulse during the period [−τC , τC ]. In fact, the off-
resonance excitation at very large distances is enforced by
several factors: the small detuning δat

L (corresponding to
t = tP ), the coupling WL, but also the much bigger over-
lap of the vibrational wavefunctions 0−g v with the initial
continuum a3Σ+

u |E0〉 (see Appendix C, Fig. 12), which
for v = 160 → 170 (Ev = −0.4 → −0.2 cm−1) is about
3.7 times larger than the overlap with the state v0 = 98
(Ev0 = −2.6 cm−1). Lastly, the negative chirp presently
studied begins resonant excitation at t < tP from the
higher vibrational levels v > 98 of the 0−g (6s, 6p3/2) state.
These weakly bound vibrational levels, which are excited
before the maximum of the pulse at t = tP , are much
more sensitive at the presence of the field than the lev-
els excited at t > tP . Indeed, the time evolution of the
population excited in these states shows Rabi oscillations,
which are the signature of significant nonadiabatic effects,
as discussed in reference [20].

145 150
t(ps)

0

0.05

0.1

P
0g

-

150 160
t(ps)

140 150 160
t(ps)

0

0.05

0.1

τ
C
 ~ τ

L
=1 ps

a) b) c)
τ

C
 ~ τ

L
=6 ps τ

C
 ~ τ

L
=12 ps

Fig. 4. Time evolution of P
0−g

(t), the 0−
g (6s, 6p3/2) population

(for a total population normalized at 1 on the grid) obtained by
photoassociating with the “almost no-chirped” pulses having
τC ≈ τL, whose envelopes f(t), represented in Figure 3a, are
centered at tP = 150 ps. In a trap of volume V = 10−3 cm3,
containing 108 atoms at the temperature T = 50 µK, the time
evolution of N

0−g
(t), the number of molecules photoassociated

per pump pulse, is related to P
0−g

(t) by: N
0−g

(t) ∼ 2000P
0−g

(t).

5.1 Population transferred to the 0−
g (6s, 6p3/2)

excited state

We shall discuss the time evolution of the probability for
population transfer on the whole grid in the 0−g (6s, 6p3/2)
surface:

P0−
g
(t) =

∫ LR

0

|Ψ0−
g
(R′, t)|2dR′. (30)

The relative population P0−
g
(E0) transferred in

the 0−g (6s, 6p3/2) channel after the end of the
pulse (t − tP 
 τC) is given in Table 1. Figures 4
and 5 show the time evolution of the population P0−

g
(t)

transferred in the 0−g (6s, 6p3/2) state during the photoas-
sociation process, using the “almost no-chirped” pulses
with τC ≈ τL = 1, 6, 12 ps, and the “really chirped” pulses
with τC = 581, 96, 47 ps, respectively. The results shown
in this section correspond to an initial population in the
a3Σ+

u (6s, 6s) |E0〉 state, which is normalized to 1 on the
whole grid of extension LR. These results can be used to
estimate roughly the averaged probability corresponding
to the thermal distribution. Indeed, for the detuning
considered, RL is close to RN , (see Sect. 2.3.4) so that
in the range of distances governing the photoassociation
process, the R−dependence of the initial wavefunction is
the same for all energies apart from a scaling factor.Then
the probability, per pump pulse, of photoassociation of a
pair of atoms at the temperature T = E0/kB is estimated
to be equal to P0−

g
(T ) ≈ P0−

g
(E0)(kBT/(∂E/∂n)|E0)/Z ≈

20P0−
g
(E0)/Z, where kBT is the width of the thermal

distribution and (∂n/∂E)|E0 the density of collisional
states at the energy E0 (Z being the partition function,
see Eq. (13)). The factor 20 can be estimated from
equations (35) and (40) in Section 6.3 below.

We also consider the distribution of the 0−g (6s, 6p3/2)
radialy integrated population, P0−

g
(R, tfoc), as a function

of the distance R, at the time tfoc = tP + Tvib/2 = tP +
130 ps, corresponding to the focussing at the inner turning
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Fig. 5. Time evolution of P
0
−
g

(t), the 0−
g population (for

a total population normalized at 1 on the grid) during the
photoassociation process, by using the “really chirped” pulses
whose envelopes f(t) are represented in Figures 3b and 3c:
(a) 0−

g (6s, 6p3/2) population for a pulse with τC = 581 ps
(τL = 1 ps), centered at tP = 1500 ps, (b) 0−

g (6s, 6p3/2) pop-
ulation for a pulse with τC = 96 ps (τL = 6 ps), centered at
tP = 1000 ps, (c) 0−

g (6s, 6p3/2) population for a pulse with
τC = 47 ps (τL = 12 ps), centered at tP = 1000 ps. In a trap
of volume V = 10−3 cm3, containing 108 atoms at the temper-
ature T = 50 µK, the time evolution of N

0−g (t), the number of

molecules photoassociated per pump pulse, is related to P
0−g (t)

by: N
0
−
g

(t) ∼ 2000P
0
−
g

(t).

point:

P0−
g
(R, tfoc) =

∫ R

0

|Ψ0−
g
(R′, tfoc)|2dR′. (31)

At this time tfoc almost all the studied pulses are prac-
tically “finished”, W (t) ≈ 0, except the very large pulse
with τC = 581 ps (τL = 1 ps), for which anyway the ef-
ficient time leading to significant transfer is over (see the
dashed line in Fig. 3). For t > tfoc the population P0−

g

remains constant, the two potentials 0−g and a3Σ+
u being

no longer coupled.
In Figure 6 we present P0−

g
(R, tfoc), the 0−g (6s, 6p3/2)

radialy integrated population as a function of the dis-
tance R, at the moment tfoc = tP + Tvib/2 = tP +130 ps,
for all the pulses. Results for pulses having the same τL are
represented together, the left column showing results until
LR = 19250a0 (the limit of the spatial grid), and the right
column showing the repartitions of the same populations
at small distances, until R = 140a0.

At a first view the time evolutions of the 0−g population
given by the three classes of pulses, with τL = 1, 6, 12 ps
(and with three increasing energies of the pulse Epulse)
are quite different, and this can be understood looking at
the characteristic spectral bandwidths (see Tab. 1) and
comparing them with the detuning.

As it was predicted, the two pulses with τL = 1 ps mas-
sively populate the 0−g continuum (see Figs. 4a and 5a),
leading at the end to the same large value of the 0−g pop-
ulation (P0−

g
= 0.04). In this case, the spectral width �δω

and the pulse energy Epulse appear as the only parameters
controlling the results, independently of the energy range
2�|χ|τC swept during the pulse. The distributions of the
0−g population function of the distance R are nearly identi-
cal for both pulses (see Fig. 6a), except at short distances

(Fig. 6d). It appears that due to the high value of the spec-
tral width �δω > δat

L , the population is mainly transferred
at very large distances R > 1000a0 (non resonantly for the
“almost no-chirped” pulse with τC ≈ τL = 1 ps). Only a
little amount is excited at smaller distances R < 100a0,
where the chirped pulse with τC = 581 ps has a large “res-
onance window” (large value �|χ|τC) and is more efficient
than the short pulse of τC ≈ 1 ps, with a narrow “reso-
nance window”. It is interesting to remark that, for the
pulse with τC ≈ 1 ps the population transfer is adiabatic
(αmax > 1) during the time window [−τC , τC ]. In contrast,
the adiabaticity condition cannot be satisfied for the very
long pulse with τC = 581 ps, for which αmax is not defined
(see Tab. 1). In fact, the oscillations which can be observed
in the time evolution of the 0−g population in Figure 5a cor-
respond to a strong Rabi coupling at very large distances
(described by Eq. (29)) and are the signature of a strong
nonadiabatic behaviour in the population transfer. This
non adiabatic population transfer at the large distances
swept by the instantaneous crossing point results in a large
population remaining in the 0−g surface after the end of the
pulse. Similar oscillations indicating a nonadiabatic trans-
fer can be equally observed in Figure 5b, in the evolution
of the 0−g population during the excitation with the pulse
with τC = 96 ps (τL = 6 ps), to whom corresponds a small
value of αmax = 0.5. The two other classes of pulses, with
τL = 6 and 12 ps, have narrower spectral widths, smaller
than the detuning δat

L = 2.656 cm−1. For these cases, it
appears clearly that, for the same τL, the “really chirped”
pulse is much more efficient for the 0−g population trans-
fer, both for the total transfer, as for the transfer at small
distances (see Figs. 6b, 6c, 6e and 6f). The radially inte-
grated population P0−

g
(R, tfoc) is generally a overall lin-

early increasing function of the distance R (see Fig. 6 left
column) except for the pulse with τC = 47 ps (τL = 12 ps),
for which P0−

g
(R, tfoc) reaches its limiting value at small

R ≈ 140a0 (Figs. 6c and 6f)), because the population
transfer takes place adiabatically in a “photoassociation
window” [20]. Indeed, in this case, the energy range res-
onantly swept by the pulse to the large distances during
the period [−τC , τC ] is �|χ|τC = 1.17 cm−1, the spectral
width is �δω = 1.23 cm−1 (satisfying �|χ|τC + �δω < δat

L )
and the population transfer keeps an adiabatic charac-
ter (αmax = 0.87) both in the resonance window, and at
large internuclear distances (∆(R) ∼ δat

L for R > 200a0).
On the contrary, the chirped pulse with τC = 96 ps
(τL = 6 ps) does not produce excitation in a photoassoci-
ation window, but everywhere at large distances, because
the energy range swept during the time window, satisfying
�|χ|τC + �δω > δat

L , extends above the dissociation limit
(�|χ|τC ∼ �δω ∼ 2.4 cm−1 ≈ δat

L ).
We have to remark that the very different evolutions of

the 0−g populations during the pulses with τL = 6 ps (see
Figs. 4b and 5b), on the one hand, and with τL = 12 ps
(see Figs. 4c and 5c) on the other hand, are characteristic
of two qualitatively different kinds of results: at the end of
the pulse, the wavepacket created in the excited state can
be spread on a wide range of distances at large R, or can
be confined within a “photoassociation window”. Due to
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Comparison of two typical final states: (a) transfer at large
distances, and (b) excitation in a “photoassociation window”.

the large amplitude of the initial continuum wavefunction
at large R, it is expected that more population should be
transferred in the first case.

This is illustrated in Figure 7 showing the 0−g
wavepackets at tfoc = tP + Tvib/2 = tP + 130 ps, (a) for
the chirped pulse with τC = 96 ps (τL = 6 ps), giving
population transfer on the whole spatial grid, and (b) for
the chirped pulse with τC = 47 ps (τL = 12 ps), pro-
ducing transfer in a “photoassociation window”. Due to
the choice of the χ value, at tfoc = tP + Tvib(v0)/2 both
wavepackets, in the R-range corresponding to the outer
well of the 0−g potential, are focussed at the inner turning
point of the vibrational eigenstate v0 excited at t = tP .

We are especially interested in pulses producing the
maximum transfer of 0−g population to the small and inter-
mediate distances (see Fig. 6 for this analysis). From this
point of view, the pulses with τL = 6 ps (τC = 96 ps and
τC = 6.012 ps) and the pulse with τC = 47 ps (τL = 12 ps)
are giving the bigger population at small R. Their re-
sults can be seen and compared in Figures 6e and 6f. At
tfoc = tP + Tvib/2, both pulses with τC = 6.012 ps (τL =
6 ps) and with τC = 47 ps (τL = 12 ps) give P0−

g
(100a0,

tfoc) ≈ 4 × 10−4, but the pulse with τC = 47 ps, which
produces a “photoassociation window”, is more favorable
to transfer population at smaller R-values R < 100a0.
Nevertheless, it is the pulse with τC = 96 ps (τL = 6 ps)
which seems to be the most efficient for the 0−g population
transfer, at large distances, but also to the inner region
(P0−

g
(100a0, tfoc) ≈ 8× 10−4), because even after the end
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of the pulse, the population will be accelerated inside from
the large distances.

Let’s remark that, as discussed in reference [26], the
negative chirp has a noticeable contribution in the accel-
eration of the wavepacket created in the excited state 0−g
towards short internuclear distances. Indeed, ω(t) decreas-
ing with time, the instantaneous crossing point moves to
smaller distances, following the motion of the wavepacket
which is accelerated inside the potential well. This is fa-
vorable to our goal of maximizing 0−g population at small
distances. On the other hand, this means that an inter-
pretation of the transfer process within the impulsive ap-
proximation could easily be invalidated. For example, in
our case, the population in the initial continuum state in-
tegrated until R = 100a0 is:

∫ R=100

0

|ΨΣ,T=54µK(R′)|2 dR′ = 3 × 10−4 (32)

and, if the impulsive approximation was valid until t =
tfoc, this integral (32) gives an upper limit for the integral∫ R=100

0 |Ψ0−
g
(R′, tfoc)|2dR′. But we have shown that, in

the cases of some of the pulses discussed before, (with
τC ≈ 6 ps, τC = 96 ps and τC = 47 ps), P0−

g
(100a0,

tfoc) reaches indeed bigger values, proving the acceleration
towards shorter internuclear distances for times t < tfoc.

5.2 Population in the last vibrational levels
of the ground state

In the non perturbative regime there is a redistribution of
population in the ground surface a3Σ+

u (6s, 6s), arising as
well in the bound spectrum, as in the dissociation contin-
uum. There appears a “hole” in the initial wavefunction
around RL, a large part of this population being trans-
ferred in bound vibrational levels of 0−g and a3Σ+

u .
Due to the coupling at large distances between the

two electronic states, the last vibrational levels of
the a3Σ+

u (6s, 6s) state are noticeably populated during
the photoassociation process. Figures 8 and 9 show the
evolution of the population in these last levels (v′′ = 53
is the last vibrational level [20]). If one compares pulses
with the same τL, the final transferred population is
roughly of the same order, but for τL = 1 or 12 ps it
is bigger for “almost no-chirped” pulses, probably be-
cause the maximum coupling Wmax is more intense for
shorter pulses. The pulses with τL = 6 ps (τC = 6.012 ps
and 96 ps) give almost the same population of v′′ = 52,
53. In Figure 9b we show the Rabi oscillations in op-
posite phase between the 0−g population P0−

g
(which is

distributed on the whole spatial grid of LR = 19250a0)
and the population of the last vibrational state of the
a3Σ+

u (6s, 6s), with v′′ = 53, whose wavefunction extends
at very large distances (the last oscillation is between 150
and 1200a0, see Fig. 2a). This result is symptomatic for
the efficient exchange of population between the two chan-
nels at very large distances, already emphasized, and due

to the small detuning and large overlap integral (see Ap-
pendix C, Fig. 12). Around tp = 1000 ps, the period of the
observed Rabi oscillations is about 12.4 ps, in agreement
with the result given by the formula (29). The oscillations
which can be observed in Figures 9a and 9b are character-
istic for nonadiabatic effects in the transfer of populations.

One has to emphasize that, in the cases of adiabatic
transfer in a limited spatial window (for example, here
with the pulse τC = 47 ps, and in reference [20] with a
pulse having τC = 34.8 ps), the populations, at the end
of the pulse, in the last bound states v′′ = 52, 53 of the
ground potential, are of the same order as the popula-
tions P0−

g
of the 0−g levels resonantly excited by the pulse

in the so-called “photoassociation window”. For example,
for the pulse with τC = 47 ps, P0−

g
(E0) = 5.34×10−4 (see

Tab. 1), and the population P3Σ+
u
(v′′ = 52) + P3Σ+

u
(v′′ =

53) ≈ 2.25 × 10−4 (see Fig. 9c). But we should note that
for v′′ = 52, 53 the vibrational wavefunctions, extending
up to hundreds of a0, have a good overlap with wave-
functions in the excited state corresponding to levels close
to the dissociation limit and transiently populated during
the pulse. In contrast, the 0−g levels populated within the
“photoassociation window” have a vibrational motion re-
stricted to much smaller distances, since their outer turn-
ing points are between Rmin = 84a0 and Rmax = 117a0:
they remain populated after the pulse [20].

5.3 Evolution of the 0−
g wavepacket after the pulse

We shall briefly describe the wavepackets evolution in the
0−g surface after the pulse, in the two typical cases dis-
cussed before: excitation in a limited spatial “photoasso-
ciation window” and excitation at all distances, with mas-
sive transfer of population at large distances. Obviously,
these two types of wavepackets created by the photoasso-
ciating pulse are extremely different, and their dynamics is
significant in view of some anticipation of the results that
could be brought by a second pulse. This second pulse can
be even identical with the first one, but time-delayed (in
the analysis of the repetition rate of the laser) or a differ-
ent pulse, if the goal is the stabilization of the system by
stimulated emission to low vibrational levels of the ground
state. These subjects will be treated in a future article.

5.3.1 Excitation in “a window”: vibrational dynamics

Figure 10 shows the evolution of the 0−g wavepacket adi-
abatically excited (αmax = 0.87) in a limited spatial
window, with a chirped pulse of time width τC = 47 ps
(τL = 12 ps). In fact, during the pulse, a large amount of
population is transferred to levels close to the Cs2(6s +
6p3/2) dissociation limit (see the wavepacket at t = tP ,
in Fig. 10a), but, due to the adiabaticity of the pop-
ulation transfer outside the “photoassociation window”,
this population goes back to the ground state and only a
small range of distances (R < 200a0) remains populated.
Then, after the pulse, one can observe a typical vibra-
tional dynamics, as it can be seen in the figure for some
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Fig. 8. Populations in the last vibrational levels v′′ (a3Σ+
u (6s, 6s)) of the ground state, for “almost no-chirped” pulses (τC ≈ τL).

(The total population is normalized at 1 on the grid.) Multiplying the vertical axis by a factor equal to 2000 gives the number
of molecules in the last vibrational levels v′′ of the ground state for a trap of volume V = 10−3 cm3, containing 108 atoms at
the temperature T = 50 µK.

selected times: at t = tP + Tvib(v0)/2 the packet is focal-
ized at the inner turning point of v0, at t = tP + Tvib(v0)
the packet comes back at the external turning point of
v0 (RL = 93.7a0), at t = tP +2Tvib(v0) ≈ tP +500 ps, one
can distinguish two parts: one, with a maximum around
RL = 93.7a0, is composed by levels with vibrational pe-
riods close to Tvib(v0); the other has a maximum around
R = 130a0: indeed, the vibrational levels of the 0−g poten-
tial having the external turning point around this distance
vibrate with Tvib ≈ 500 ps.

5.3.2 Excitation at large distances: acceleration to the inner
region

For pulses having sufficiently large bandwidths (δω > δat
L ),

the population transferred at large distances during the
pulse remains on the excited surface 0−g after the end
of the pulse. Just after the end of the pulse, the radial
distribution |Ψ0−

g
(R, t)|2 of the probability density repro-

duces that of the initial collisional state on the 3Σ+
u sur-

face at sufficiently large distances R > 500a0. After that,
the wavepacket evolves in the −C3/R3 potential and it is
accelerated toward the inner region. Figure 11 describes
the evolution of the wavepacket created by the pulse with
τC = 96 ps (τL = 6 ps), at different moments tP +∆t, with
∆t = 0.1, 4, 9, and 14 ns. As it can be seen in Figure 11a,
for R ≥ 1500a0, there is no noticeable modification of the
probability density |Ψ0−

g
(R, t)|2, even for the largest value

of ∆t. As ∆t increases, the nodes occuring at R ≥ 500a0

(R1 ≈ 800a0 and R2 ≈ 1270a0, for example) begin to be
shifted toward small R values. In the range R ≤ 500a0,
vibrational motion can be observed winning progressively

distances indicated as Rvib on the figures, corresponding
to the outer turning point of the bound level with the vi-
brational period Tvib ≈ ∆t. For example, for ∆t = 14 ns
(see Fig. 11a.4), one has Rvib = 490a0 which corresponds
to the outer turning point of the vibrational level v = 162
with vibrational period Tvib ≈ 13.7 ns. (The largest time
τmax = 2.9 µs relevant for the presently used grid with
LR = 19250a0 correspond to vibrational motion at dis-
tances R ≈ 4000a0.)

The acceleration of the 0−g wavepacket can be esti-
mated introducing the radial flux [42]:

J0−
g
(R, t) = − i�

µ
Im

[
Ψ∗

0−
g
(R, t)

∂

∂R
Ψ0−

g
(R, t)

]
, (33)

with µ = 121136 a.u. the reduced mass of Cs2. Writ-
ing the wavepacket as Ψ0−

g
(R, t) = |Ψ0−

g
(R, t)|eiφ

0−g
(R,t)

,
one has p0−

g
(R, t)/� = (µ/�)J0−

g
(R, t)/|Ψ0−

g
(R, t)|2 =

∂φ0−
g
(R, t)/∂R. Figure 11b reports the R-variation of the

momentum p0−
g
/� at the times tp + ∆t; the rapid in-

crease at intermediate R values 200a0 ≤ R ≤ 700a0, for
0.1 ns < ∆t < 5 ns is clearly illustrated. This increase in
the momentum transfer during the pulse is a signature of
the “kick” given by the laser light to the molecule. For
“really chirped” pulses the photoassociation probability
is relatively important, and the population transferred at
intermediate distance is accelerated to the inner region a
short time after the end of the pulse, increasing signifi-
cantly the population at short distances. Optimization of
the pulse parameters in order to create wavepackets at
intermediate distances, with a strong momentum in the
direction of the inner region, will be considered in the
future.
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g wavepackets evolution after the pulse with τC =

47 ps (τL = 12 ps).

6 Photoassociation probability from a thermal
average over the incident kinetic energies

Supposing thermal equilibrium at the temperature T , the
initial density matrix can be expressed in terms of energy-
normalized collisional eigenstates of energies E in the

ground state a3Σ+
u , as in the formula (12). Then the total

probability per pump pulse that a given pair of atoms to
be photoassociated into the excited state 0−g at the tem-
perature T , is:

P0−
g
(T ) =

1
Z

∫ ∞

0

dEe−βEP̄0−
g
(E), (34)

where P̄0−
g
(E) accounts for the density of probability

(probability per unit energy range) that an energy nor-
malized continuum state of energy E belonging to the
ground state a3Σ+

u to be photoassociated at the end of
the pulse in the excited state 0−g . P̄0−

g
(E) has dimension

of 1/E, being obtained with the formula (50) from the
dimensionless photoassociation probability P0−

g
(E) in the

0−g state:

P̄0−
g
(E) =

{
∂E

∂n

}−1

P0−
g
(E). (35)

We shall discuss in the following the evaluation of the
integral (34).

6.1 Analytical thermal average using the scaling law
in the vicinity of E → 0

In reference [20] and in the most part of this paper we
present results of photoassociation calculations consider-
ing only the s-wave and taking as the initial state in
the a3Σ+

u (6s, 6s) ground potential a single continuum
state of the thermal energy distribution, with the en-
ergy E0. In our calculation E0 = 1.7211 × 10−10 a.u. =
3.778× 10−5 cm−1, being, in our method, the energy of a
continuum state belonging to the discretized continuum
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which is calculated numerically with the Sine Mapped
Grid method in a box of radius LR = 19250a0. Then, with
this choice of the initial continuum state, the temperature
in the thermal ensemble of atoms is arbitrarily defined
by kBT = E0, as being T = 54 µK. At this tempera-
ture, the initial Boltzmann distribution (see formula (12))
is narrow (e−3 = 0.05), and a first approximation is to
represent it by its mean energy E0, which is justified by
the fact that the spectral widths �δω of the pulses con-
sidered in photoassociation (see Tab. 1) are much larger
than kBT . Then, the integral (34) can be evaluated from
P̄0−

g
(E0), by using a threshold scaling law to estimate the

probabilities P̄0−
g
(E) for E �= E0 [16].

We shall discuss the conditions making valid the use
of the scaling law for estimations of the photoassociation
rates. We emphasize that such a discussion makes sense
only for the photoassociation with a cw-laser or with a
pulse leading to the formation of a spatially localized
wavepacket on the excited surface [16,20], giving what
we have called a “photoassociation window”. In such a
case, the main contribution to the photoassociation pro-
cess towards high excited vibrational levels is provided
by the very localized range of the internuclear distances

[Rmin, Rmax], around R ∼ RL, swept by the instantaneous
crossing point Rc(t) during the time window [−τc, τc] [20].
The photoassociation yield is determined by the overlap
between the initial stationary continuum |3Σ+

u , E〉 in the
ground state and the excited wavefunctions |0−g , v〉 (see
Appendix C, Fig. 12).

A scaling law for the behaviour of the continuum wave-
functions can be obtained from their asymptotic forms.
For a very small detuning δat

L , the crossing point RL of
the dressed potentials is at a distance large enough mak-
ing that, even at a low continuum energy E, the potential
in RL can be considered as negligible: E > C6/R6

L. Then,
for a s-wave, the continuum wavefunction can be described
by its asymptotic behaviour [46]:

|Ψg,E(R)| ≈
√

2µ

π�2

sin[k(R − L)]√
k

(36)

L is the scattering length of the ground surface. This
means that, for sufficiently low collision energies:

E � 1
2µ

∣∣∣∣ π�

RL − L

∣∣∣∣
2

= kBTan (37)
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one obtains the following probability density in RL:

|Ψg,E(RL)|2 ≈ 2µ

π�2
k(RL − L)2 ∼

√
E (38)

as E = (�k)2/2µ. Then, for pulses producing a spatially
localized wavepacket on the excited surface, and for suf-
ficiently small energies, one can assume the following law
for the probabilities P̄0−

g
(E) ∼ |Ψg,E(RL)|2:

P̄0−
g
(E) = P̄0−

g
(E0)

√
E/E0. (39)

Using the relation (39), the integral (34) can be evaluated
as being:

Pan
0−

g
(T ) =

1
Z

P̄0−
g
(E0)

√
π

2
√

E0

(kBT )3/2 (40)

Pan
0−

g
(T ) represents the probability that a pair of atoms, be-

longing to a gas in a volume V and at the temperature T ,
and described only by s-waves, to be photoassociated in
the 0−g (6s + 6p3/2) state.

For a typical number which can be obtained for this
quantity, we shall take as example the pulse studied in
great detail in reference [20], whose characteristics are
given in Table 1, and having the duration τC = 34.8 ps
(τL = 15 ps). The induced dynamics (which is very simi-
lar to that resulting from the “really chirped” pulse with
τC = 46.6 ps and τL = 12 ps) results in an adiabatic
population transfer in a spatial range with Rmin = 85a0,
Rmax = 110a0, with αmax = 0.95, and populating about
15 vibrational levels in the vicinity of v0 = 98 level in the
external well of the 0−g (6s+6p3/2) potential. It corresponds
to the photoassociation probability P0−

g
(E0) = 3.245 ×

10−4. Then, taking into account the density of states
dn/dE|E0 = 1.1415 × 1011 a.u. at E0/kB = 54.35 µK,
for a gas of cesium atoms at T = 54 µK we have used the
formula (40) to obtain:

ZPan
0−

g
(T = 54 µK, τC = 34.8 ps) = 0.00560 (41)

with τC characterizing the pulse used for photoassociation.

6.2 Average implicitly accounting for real threshold
effects

As discussed in a previous section, in the conditions of
temperature and detuning discussed in the present pa-
per, the asymptotic behaviour of the continuum wave-
function having the energy E0 = kBT , T = 54 µK, is
not reached at R = RL = 94a0. Indeed, the potential en-
ergy strongly determines the structure of the initial wave-
function for R ≤ RN = 82.3a0, RN being the position of
the last common node. This observation is in agreement
with the discussion of reference [46], showing that the
asymptotic behaviour in a −C6/R6 potential is reached
for R 
 RB = (µC6/10�

2)1/4, giving RB = 95a0 for the
3Σ+

u (6s, 6s) potential.

Then, in the present studied example of cold atoms
photoassociation, the detuning δat

L = 2.656 cm−1 is too
large (RL ≈ RN ), and the temperature T = 54 µK not
sufficiently small compared to Tan = 69.2 µK (see the
relation (37)), to allow the evaluation of the photoassoci-
ation rate from an analytical thermal average. The scal-
ing law in

√
E being not valid, it is necessary to explic-

itly study the energy variation of P̄0−
g
(E), by considering

different initial collisional states of energy E in the 3Σ+
u

potential, and having a node at LR. In this case, the real
threshold effects are completely and correctly accounted
for implicitly by performing numerical integration in equa-
tion (34). For example, for the pulse with τC = 34.8 ps
(τL = 15 ps) studied in reference [20], we have performed
21 time-propagation calculations for collisional energies in
the range 36.6 nK < E/kB < 633 µK. Let us emphasize
that this detailed analysis of the threshold effects has be-
come possible owing to the Mapped Sine Grid method [30]
for which a large box of dimension LR can be consid-
ered. The energy-dependence of P̄0−

g
(E) will be analyzed

in a further publication [43]. It differs strongly from the√
E scalling law. P̄0−

g
(E) increases very rapidly at thresh-

old exhibiting a very sharp asymmetrical resonance like
structure with a maximum at E/kB ≈ 7.9 µK (smaller
than the temperature studied presently) with a FWHM
∆E/kB ≈ 4.7 µK. For the temperature T = 54 µK, nu-
merical integration in equation (34) leads to

ZP0−
g

(T = 54 µK, τC = 34.8 ps) = 0.00685. (42)

The rather good agreement between the analytic aver-
age (41) calculated with the scaling law, and the aver-
age (42) containing the threshold effects is completely
fortuitous.

The two pulses described by the same parameters
δat
L , WL and χ, and differing only by their durations

τC = 34.8 ps (τL = 15 ps) and τC = 46.6 ps (τL =
12 ps) are associated with rather similar “photoassocia-
tion windows” characterized by the values (αmax = 0.95,
�|χ|τC = 0.87 cm−1) and (αmax = 0.87, �|χ|τC =
1.17 cm−1). For the same initial collisional state E0/kB =
54.35 µK, the corresponding photoassociation probabili-
ties are P0−

g
(E0) = 3.245 × 10−4 and 5.340 × 10−4. The

photoassociation probability is larger for the longer pulse
with τC = 46.6 ps (τL = 12 ps), which creates a slightly
larger photoassociation window (Rmin = 84a0, Rmax =
117a0), compared to (Rmin = 85a0, Rmax = 110a0) for
the pulse with τC = 34.8 ps (τL = 15 ps). This increase
of P0−

g
(E0) has to be related to the increase of the prob-

ability density within the photoassociation window in the
initial collisional state (

∫ Rmax

Rmin
|ΨΣ,E0(R

′)|2dR′ = 0.00044
and 0.00076, see also Ref. [20], Fig. 3), which is a signa-
ture of the nearly total population transfer in this range
of R.

For the pulse with τC = 34.8 ps (τL = 15 ps) we
have shown that the energy dependence of P̄0−

g
(E) is pro-

portional to that of the square of the overlap integral
|〈0−g v0 = 98|3Σ+

u E〉|2 [43]. Taking into account the
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very similar dynamics induced by the two pulses with
τC = 34.8 ps (τL = 15 ps) and τC = 46.6 ps (τL = 12 ps),
it is reasonable to assume that the energy variation of
P̄0−

g
(E) is the same for both pulses. Therefore, for the

same temperature, both pulses correspond to the same
value of the ratio P0−

g
(T )/P̄0−

g
(E0), and the total prob-

ability per pump pulse τC = 46.6 ps (τL = 12 ps) that
a given pair of atoms to be photoassociated into the 0−g
state at a temperature T = 54 µK can be estimated to:

ZP0−
g

(T = 54 µK, τC = 46.6 ps) = 0.0113. (43)

6.3 Total number of molecules photoassociated
per pump pulse

For a number of N atoms in a volume V , the number
of pairs of atoms is N(N − 1)/2 ≈ N2/2. Taking into
account the spin degeneracy of the Cs(62S) atomic state,
dA = 2, and of the initial electronic state d3Σ+

u
= 3, the

total number of molecules photoassociated in the excited
state 0−g per pump pulse is:

N =
N2

2
P0−

g
(T )

d3Σ+
u

d2
A

. (44)

For a trap of volume V = 10−3 cm3, at the tempera-
ture T = 54 µK and with a density of atoms NA =
N/V = 1011 cm−3, the partition function is Q(T ) =
59.86 × 10−10a−3

0 = 40.4 × 1015 cm−3. Then the number
of molecules photoassociated per pump pulse is:

N(τC=34.8 ps) = 0.69, N(τC=46.6 ps) = 1.40. (45)

Using equations (35) and (40), for a trap of volume
V = 10−3 cm3, containing 108 atoms at the temperature
T = 50 µK, it is possible to relate the number of molecules
photoassociated per pump pulse N to the probability of
photoassociation in the 0−g surface P0−

g
(E0), correspond-

ing to a total population normalized to 1 on the grid, by:
N ∼ 2000P0−

g
(E0).

For a repetition rate equal to 108 Hz and supposing
that each pulse acts on the same initial state, this gives
6.9 × 107 molecules per second for the pulse with τC =
34.8 ps (τL = 15 ps) and 1.4 × 108 molecules per second
for the pulse with τC = 46.6 ps (τL = 12 ps).

The analysis of the energy-dependence of the photoas-
sociation probability P̄0−

g
(E) for pulses leading to signifi-

cant population transfer at large internuclear distances is
in progress.

7 Discussion: possible ways for optimization

From the previous analysis, we may extract some direc-
tions on possible ways of optimizing the pulse. In the
situation where the population transfer occurs mainly
within the photoassociation window, for sufficiently large

coupling Wmax, the total adiabatic population trans-
fer implies that the whole population for pair of atoms
with relative distance lying in the [Rmin, Rmax] range,
Pinit =

∫ Rmax

Rmin
|Ψg,E0(R′, t = 0)|2dR′, is transferred to

bound levels of the excited state and to the last bound
levels of the ground state. The photoassociation yield can
be optimized by designing the chirped pulse in order to
maximize Pinit. This can be achieved by increasing the
photoassociation window with τC values as large as pos-
sible, under the condition �(δω + |χ|τC) ≤ δat

L so that
only bound levels are populated. This yields an optimal
value for τL which is τopt ∼ 8� ln 2/δat

L . Since the con-
dition (28) is fixing an upper value for τL to make fo-
calization possible, we end with an upper limit for the
detuning, and optimization can be achieved making use
of the scaling laws governing the spectra of long range
molecules. This will be further explored in future work,
but for the detuning δat

L = 2.652 cm−1 considered here, it
is clear that the optimal pulse would be τL ∼ 10 ps, corre-
sponding to Pinit = 1.27×10−3, i.e. to a photoassociation
rate increased by a factor 2.4 compared to the pulse with
τC = 47 ps (τL = 12 ps), considered in the present work.

We have also obtained an increase of the population
by a factor of 4.3 when considering the pulse τC = 34.8 ps
(τL = 15 ps), and increasing the coupling by a factor of 16,
corresponding to a peak intensity IL = 3.36 MWcm−2 for
the transform limited pulse.

Finally, we should remind that the present choice for
the detuning corresponds to a minimum in the cw pho-
toassociation spectrum [6]. An increase by a factor of 5
on the probability reported in the last column of Table 1
was obtained, by reducing the detuning to 0.0695 cm−1

(therefore moving the value of RL to 150a0) in case of a
pulse with τC = 110 ps (τL = 58 ps) (corresponding to the
present result for τC = 47 ps, τL = 12 ps). The number of
molecules formed in the conditions of Section 6.3 would
reach 7 × 108 molecules per second, so that in less than
70 ms all the pairs of atoms are transformed to molecules.

8 Conclusion

We have investigated the possibilities offered by chirped
laser pulses to optimize the yield of the photoassociation
process. Following a previous paper [20], time-dependent
calculations have been presented for the particular exam-
ple of the reaction (Cs(6s) + Cs(6s))3Σ+

u → Cs2 0−g (6s +
6p3/2) involving ground state cesium atoms at a temper-
ature T ∼ 54 µK. These cold collisions occur in pres-
ence of laser pulses of different spectral widths δω and
with the same linear chirp rate in the time domain χ =
−4.79 × 10−3 ps−2. The central frequency is red-detuned
by δL ∼ 2.65 cm−1 relative to the D2 atomic line and
excites at resonance the v0 = 98 vibrational level in the
outer well of the 0−g level potential. The new aspects in
the present work are:

– (i) the calculations take into account the mixed state
character of the initial collision state, described by a
statistical mixture of stationary collision eigenstates
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representing thermal equilibrium at T ∼ 54 µK.
This choice reproduces correctly the spatial delo-
calization of the initial state, with large de Broglie
wavelength λDB ∼ 975a0. In the range of detunings
considered here, experiments with a cw laser have
demonstrated minima in the photoassociation rate
corresponding to the nodes in the scattering wave-
functions: such nodes, common to the various eigen-
states, are correctly reproduced in the present treat-
ment. The continuum wavefunctions are represented
as eigenstates in a large box (size LR ∼ 19 500a0),
using a mapped sine grid representation which in-
volves a reasonable number of grid points. The time-
dependent Schrödinger equation describing motion
in two realistic potential curves coupled by the laser
field is solved numerically.

At ultracold temperatures, the threshold effects
which govern the dependence of the photoassocia-
tion rate as a function of the energy E have to
be accounted for correctly. A high resolution anal-
ysis of such effects can be achieved by considering
a large number of unity-normalized wavefunctions
in the box, from which energy normalized functions
are deduced. A proper estimate of the absolute value
of the photoassociation rate has then been obtained
from an incoherent average over a thermal distribu-
tion of the energy normalized wavefunctions;

– (ii) in the present paper, we have explored a large va-
riety of pulses, all of them having the same central
frequency, as described above, resonant with the level
v0 = 98. All of them have the same linear chirp pa-
rameter in the time domain, χ, designed so that after
the pulse, at time tp+Tvib/2 (where tp corresponds to
the maximum of the pulse, while Tvib is the classical
vibrational period of v0) the vibrational wavepacket
created in the excited state is focussing at the in-
ner turning point. This choice is dictated by the ob-
jective of improving the efficiency of the stabiliza-
tion step, where either by spontaneous or by induced
emission the population is transferred to bound lev-
els of the a3Σ+

u ground triplet state. This chirp rate
can easily be deduced from the revival period, which
can be defined provided the populated levels stay in
a small energy range around v0. All the pulses are
obtained from a Gaussian transform-limited pulse,
with the same peak intensity IL = 120 kW/cm2.
They differ by the spectral width δω ∼ (τL)−1. By
varying τL from 1 to 6 and 12 ps, various situa-
tions are analyzed, with narrow (∼1 cm−1) or broad
(∼15 cm−1) spectral width, long (τC ∼ 580 ps) or
short (τC ∼ 1 ps) duration of the pulse stretched
by chirping. Indeed, for a given choice of δω and
χ, two different pulses can be associated: the first
one, with (τC/τL) ≈ 1 is referred to as “almost
no-chirped”, the second one, with (τC/τL) 
 1 as
“really chirped”. The resonance window 2�|χ|τC ex-
plored by the instantaneous frequency during the
time interval [tP −τC , tP +τC ] is larger in the second
case. Different situations are then encountered with

respect to the validity of the impulsive approxima-
tion, or of the adiabaticity of the population inver-
sion.

The conclusion of our study is that the “really chirped”
pulses seem generally to be more efficient. In fact, we have
observed two qualitatively different dynamical situations,
depending upon the energy range defined by �(δω+|χ|τC),
i.e. by the spectral width and the width of the resonance
window:

– under the condition �(δω + |χ|τC) < δat
L , already con-

sidered in previous work [20], the concept of a photoas-
sociation window is relevant. In spite of the delocalized
character of the initial wavefunction, we observe after
the pulse a wavepacket in the excited state localized
around RL, with a finite extension [Rmin, Rmax], corre-
sponding to the domain of variation of the outer turn-
ing points of the vibrational levels in the photoassocia-
tion window. Indeed, whereas during the time window
[tP −τC , tP +τC ] levels outside this window are signifi-
cantly populated, it is possible to optimize the param-
eters of the pulse so that an adiabatic model is valid
where no population remains, after the pulse, outside
the photoassociation window. By varying the size of
the photoassociation window, it is possible to optimize
the number of photoassociated molecules, and this di-
rection should be further explored in future work.
For fixed detuning and spectral width, an increase
of the laser coupling WL modifies the photoassocia-
tion dynamics. Having defined a parameter α such
that adiabatic population transfer is taking place
in the window [−ατC , +ατC ], we have shown that
a larger intensity is increasing the time window,
and therefore the width of the photoassociation win-
dow [−�α|χ|τC , +�α|χ|τC ], where total population in-
version is taking place. Therefore, as expected, the
photoassociation rate should be increased at large
intensities. However, the dynamics outside the pho-
toassociation window at large internuclear distances
(R > 200a0) becomes less adiabatic. Rabi oscillations
appear during the pulse, and levels outside the pho-
toassociation window, may remain populated after the
pulse;

– another situation occurs when �(δω + |χ|τC) > δat
L ,

since it is possible to transfer population to the con-
tinuum, or to highly excited vibrational levels in the
excited potential Ve(R). The results of the calculations
indeed show evidence for population transfer at large
internuclear distances. After the pulse, due to the at-
tractive character of Ve(R), with −C3/R3 asymptotic
behaviour, the wavepacket created in the excited state
is moving towards shorter distances R. For the upper-
most levels, with an outer turning point located be-
yond ∼500a0, the vibrational half period Tvib/2 be-
comes comparable to the radiative lifetime, so that
spontaneous emission may take place before the in-
termediate distance region is reached, the photoas-
sociated molecule decaying into a pair of atoms. In
contrast, the wavepacket corresponding to lower lev-
els has time to reach the intermediate region where
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spontaneous or induced emission may populate bound
levels in the Vg potential. The present calculations in-
dicate that besides the acceleration due to the po-
tential, the laser pulse has given a “kick” to the
wavepacket in the Ve curve, thus reducing the time nec-
essary to reach the intermediate distance region where
radiative stabilization of the molecule may take place.
Optimization of the pulses in view of increasing this
“kick” is a promising direction for future work, since
at large distances the continuum wavefunctions repre-
senting the initial state display a large amplitude, and
many vibrational levels of the Ve potential are located
close to dissociation limit, making the photoassocia-
tion process very efficient at small detunings, while it
is well-known from cw experiments that the bottleneck
in such situation is the stabilization process [1].

Future work should investigate photoassociation with bet-
ter values for the detuning, since the present choice corre-
sponds to a minimum in the cw photoassociation spectra.

Both the present paper and reference [20] have been in-
vestigating the population transferred to the excited state
due to photoassociation with one chirped laser pulse. In
order to get final conclusions more useful to experiments,
the theoretical work should develop further in two di-
rections. First, besides the photoassociation step, future
calculations should investigate the efficiency of the sta-
bilization process, bringing molecules to bound levels of
the ground or lower triplet state, via spontaneous or in-
duced emission. In particular the relevance of two-colour
experiments where a second pulse with a larger central
frequency is transferring population to the desired levels
should be analyzed. Second, although the present estima-
tion for photoassociation with a realistic repetition rate is
promising, it does not take into account the fact that the
second and further pulses are operating on a modified ini-
tial continuum state, where population has been extracted
to be transferred to bound levels in the excited or ground
state, or redistributed in the neighbouring continuum lev-
els. The evolution of the atomic sample in the presence of
a sequence of short pulses is an important issue, particu-
larly in view of possible applications to condensates.

Some experiments on photoassociation of cold rubid-
ium atoms have been started, making use of shorter
pulses [48]. The pulses that we discuss here are designed
for focussing the photoassociated wavepacket, and could
be achieved experimentally [49]. Alternatively, calcula-
tions of photoassociation with shorter pulses will be devel-
oped, looking for different criteria in order to optimize the
formation of stable molecules in the vibrational levels v0

of the ground a3Σ+
u triplet state, by introducing a second

pulse to transfer population to low v0 levels.

Many of the results obtained from the present analy-
sis should be valid for similar systems: in particular, the
possibility to convert easily all the pairs of atoms in a
standard trap into molecules in a few tens of milliseconds
make the use of chirped laser pulses very promising for
future photoassociation experiments.

Discussions with Fabien Bretenaker, Anne Crubellier, Ronnie
Kosloff, Ian Walmsley and Kai Willner are gratefully acknowl-
edged. This work was performed in the framework of the Eu-
ropean Research Training Network “Cold Molecules”, funded
by the European Commission under contract HPRN CT 2002
00290. M.V. acknowledges for two three-months post-doctoral
stays in Orsay funded by this contract.

Appendix A: The energy normalization
of the ground state continuum
wavefunctions calculated in a box

The s-wave ground state continuum wavefunctions (nor-
malized in the energy scale: 〈Ψg,E |Ψg,E′〉 = δ(E − E′))
have the following asymptotic behaviour:

|Ψg,E(R)| =

√
2µ

π�2

sin(k(R) + ηg)√
k(R)

(46)

where ηg is a slowly varying phase and k(R) the local wave
number determined by the electronic ground state poten-
tial Vg(R): k(R) = 1/�

√
2µ(E − Vg(R)). For E = En, the

energy-normalized wavefunction Ψg,En(R) is deduced from
the unity-normalized wavefunction φg,En(R) using the
density of states ∂E/∂n |E=En at the energy En [44,45].
Indeed, the classically allowed domain for a continuum
wavefunction is Rt ≤ R ≤ LR, where Rt is the inner turn-
ing point, and, in the standard semiclassical WKB form,
the wavefunction can be written:

Ψg,E=En(R) = Nn
1√
k(R)

sin

(∫ R

Rt

k(R′)dR′ +
π

4

)
(47)

with the Bohr-Sommerfeld quantization:

∫ LR

Rt

k(R′)dR′ =
(

n +
1
2

)
π. (48)

The normalization factor (Nn)−2 is proportional to the
density of states:

(Nn)−2 =
2µ

π�2

∂E

∂n
|E=En=

1
2

∫ LR

Rt

dR′

k(R′)
. (49)

Therefore:

Ψg,E=En(R) =
[
∂E

∂n
|E=En

]−1/2

φg,En(R). (50)

Appendix B: Chirp rate in the time domain
for focussing the excited vibrational
wavepacket at the inner turning point

The Gaussian linearly chirped laser pulse excites succes-
sively several vibrational levels in the molecular surface Ve,
creating a wavepacket located at the outer turning points
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Fig. 12. The overlap between the initial stationary continuum
state in the a3Σ+

u potential, corresponding to E0/kB = 54 µK,
and the wavefunctions of the bound levels of the 0−

g potential,
with energies Ev between −6 and 0 cm−1 under the 6s+6p3/2

limit (the smaller value observed in the vicinity of −3 cm−1 is
due to the tunneling from the outer well to the inner well of
the 0−

g potential). The horizontal arrow shows the “window”
of 0−

g vibrational levels between v = 92 and v = 106, excited
by the pulse studied in reference [20].

of the corresponding vibrational wavefunctions. The cen-
ter of the pulse excites at t = tP the level v0. We choose
the negative value of the chirp parameter χ < 0 in the
time domain such as the excited wavepacket, located ini-
tially at the outer turning points in the 0−g potential, to be
focussed at the time t = tP +Tvib(v0)/2 at the inner turn-
ing points of the excited vibrational functions. Then the
chirp value has to compensate the dispersion in the vibra-
tional periods Tvib(v) of the vibrational levels v resonantly
excited at different times by the instantaneous frequency
ω(t)/2π of the laser.

Let’s note Ev the binding energy of the level v (Ev >
0, ∂Ev/∂v < 0). The levels v0 + 1, v0 and v0 − 1 are
resonantly excited at tP − (Ev0+1 − Ev0)/(�χ) < tP , tP ,
and tP − (Ev0−1 − Ev0)/(�χ) > tP , reaching their inner
turning points with the delays Tvib(v0 + 1)/2, Tvib(v0)/2,
and Tvib(v0 − 1)/2, respectively. We deduce the value of
the chirp χ from the condition that the components of the
wavepacket should be in phase at the inner turning point.
In a first approximation the χ is supplied by the condition:

Tvib(v0)
2

= −Ev0+1 − Ev0

�χ
+

Tvib(v0 + 1)
2

= −Ev0−1 − Ev0

�χ
+

Tvib(v0 − 1)
2

. (51)

Using the definition of the vibrational period:

Tvib(v0) =
2π�

|∂E
∂v |v0 |

≈ 4π�

Ev0−1 − Ev0+1
. (52)

and of the revival period [47]:

Trev(v0) =
4π�

|∂2E
∂v2 |v0 |

≈ 4π�

Ev0+1 + Ev0−1 − 2Ev0

. (53)

One can deduce the following value of χ from equa-
tions (51):

χ = −2π
Trev(v0)

[Tvib(v0)]3
. (54)

Appendix C: Overlap of the initial continuum
with the 0−

g vibrational wavefunctions

It is important, for qualitative discussions on the vari-
ous domain of internuclear distances, to keep in mind the
typical variation of overlap integrals between stationary
wavefunctions. We have represented in Figure 12 the over-
lap integral |〈0−g Ev|3Σ+

u E0 = kBT 〉| between the initial
collisional state in the a3Σ+

u potential, corresponding to
E0/kB = 54 µK, and the wavefunctions of the bound lev-
els of the 0−g potential, with energies Ev between −6 and
0 cm−1 under the 6s + 6p3/2 limit.
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Laboratoire Aimé Cotton, 2003
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